首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用廉价低毒性的环己胺(CHA)作为有机模板剂,并合理添加少量MCM-49沸石晶种,在静态水热条件下成功合成了高纯度MCM-49沸石.研究了起始凝胶组成(如Al2O3/SiO2,H2O/SiO2,CHA/SiO2,晶种/SiO2,Na2O/SiO2)、晶化温度和时间等因素对合成MCM-49沸石的影响.通过XRD、SEM、N2吸附、固体27Al和29Si MAS NMR等手段表征产物,结果表明合成的MCM-49沸石具有良好的结晶度、均匀的晶体尺寸、高比表面积和纯的四配位Al3+物种.热重差热分析(TG-DTA)和固体13C MAS NMR表征结果证实CHA是作为模板剂填充在沸石产物的孔道内.这种合成MCM-49的方法具有廉价和低毒性的特点,对其产业应用有潜在的重要价值.  相似文献   

2.
Ammonium type chabazite (NH4CHA) and magnesium type chabazite (MgCHA) was prepared by hydrothermal synthesis and hydrothermal ion exchange. The structure and morphology of ion‐exchanged chabazite was characterized with various experimental techniques such as XRD, SEM, and ICP. The gas adsorption amount of chabazite decreases gradually with increase in temperature or decrease in pressure. The adsorption capacity of NH4CHA to CO2 was 3.33 mmol · g–1 at 273 K, and the saturated adsorption capacity of NH4CHA reached 3.88 mmol · g–1 under extreme pressure. The CO2 molecule was more likely to be adsorbed by all chabazite samples than the N2 molecule due to its linear molecular structure and greater molecular polarity. NH4CHA exhibited larger CO2/N2 selectivity, which first increased and then declined with the temperature decreasing, and reached the maximum value between 400 K to 450 K.  相似文献   

3.
Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In2O3 is formed on the external surface of the zeolite crystal after the addition of In(NO3)3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In+ species (In-CHA). A stoichiometric ratio of 1.5 of formed H2O to consumed H2 during H2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO2, 10In/Al2O3 (i.e., 10 wt% indium) and bulk In2O3, in which In2O3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H2 temperature-programmed reduction (H2-TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In+ cations in extra-framework positions, and prevent the deep reduction of In2O3 to In(0). In+ cations in the CHA zeolite can be oxidized with O2 to form indium oxide species and can be reduced again with H2 quantitatively. At comparable conversion, In-CHA shows better stability and C3H6 selectivity (∼85%) than In2O3, 10In/SiO2 and 10In/Al2O3, consistent with a low C3H8 dehydrogenation activation energy (94.3 kJ mol−1) and high C3H8 cracking activation energy (206 kJ mol−1) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In+ cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions.

Indium-containing chabazite zeolites show better stability and C3H6 selectivity for propane dehydrogenation than In2O3, In/SiO2 and In/Al2O3. Extra-framework In+ is identified as the stable active site upon reduction of an impregnated sample.  相似文献   

4.
In this study, NaX synthetic zeolite was modified by following the conventional cation exchange method at 70°C. 82, 81, 79 and 48% of sodium were exchanged with Li+, K+, Ca2+ and Ce3+, respectively. Thermal analysis data obtained by TG/DSC was used to evaluate the dehydration behavior of the zeolites. The strongest interaction with water and the highest dehydration enthalpy (ΔH) value were found for Li-exchanged form and compared with the other forms. The temperature required for complete dehydration increased with decreasing cation size (cation size: K+>Ce3+>Ca2+>Na+>Li+). CO2 adsorption at 5 and 25°C was also studied and the virial model equation was used to analyze the experimental data to calculate the Henry’s law constant, K o and isosteric heat of adsorption at zero loading Q st. K o values decreased with increasing temperature and the highest Qst was obtained for K rich zeolite. It was observed that both dehydration and CO2 adsorption properties are related to cation introduced into zeolite structure.  相似文献   

5.
A series of metalized C-PIM-M (M = Na+, Mg2+, Al3+, PIMs = polymers of intrinsic microporosity) materials were prepared from a carboxyl-functionalized PIM (C-PIMs). The C-PIM-Na exhibited a high CO2 adsorption capacity of 2.44 mmol/g and extreme low CH4 uptake of 0.28 mmol/g at 273 K and 101 kPa among three metallated PIMs. It showed remarkably high CO2/CH4 and CO2/N2 selectivities at both 273 and 293 K due to an advantageous pore-blocking effect of Na+ cation.  相似文献   

6.
Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2/Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2) and condition (humid), CO2 permeance and CO2/Xe selectivity stabilized at 2.0×10?8 mol m?2 s?1 Pa?1 and 67, respectively, during long‐term operation (>320 h). This endows DD3R zeolite membranes great potential for on‐stream CO2 removal from the Xe‐based closed‐circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe‐recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.  相似文献   

7.
A three‐dimensional (3D) cage‐like organic network (3D‐CON) structure synthesized by the straightforward condensation of building blocks designed with gas adsorption properties is presented. The 3D‐CON can be prepared using an easy but powerful route, which is essential for commercial scale‐up. The resulting fused aromatic 3D‐CON exhibited a high Brunauer–Emmett–Teller (BET) specific surface area of up to 2247 m2 g?1. More importantly, the 3D‐CON displayed outstanding low pressure hydrogen (H2, 2.64 wt %, 1.0 bar and 77 K), methane (CH4, 2.4 wt %, 1.0 bar and 273 K), and carbon dioxide (CO2, 26.7 wt %, 1.0 bar and 273 K) uptake with a high isosteric heat of adsorption (H2, 8.10 kJ mol?1; CH4, 18.72 kJ mol?1; CO2, 31.87 kJ mol?1). These values are among the best reported for organic networks with high thermal stability (ca. 600 °C).  相似文献   

8.
The secondary growth methodology to form zeolite membranes has stringent requirements for homogeneous epitaxial intergrowth of the seed layer and limits the number of accessible high‐quality zeolite membranes. Despite previous reports on hetero‐epitaxial growth, high‐performance zeolite membranes have yet to be reported using this approach. Here, the successful hetero‐epitaxial growth of highly siliceous ZSM‐58 (DDR‐type zeolite) films from a SSZ‐13 (CHA‐type zeolite) seed layer is reported. The resulting membranes show excellent CO2 perm‐selectivities, having maximum CO2 /N2 and CO2 /CH4 separation factors (SFs) as high as about 17 and 279, respectively, at 30 °C. Furthermore, the hybrid membrane maintains the CO2 perm‐selectivity in the presence of water vapor (the third main component in both cases), that is, CO2 /N2 SF of about 14 and CO2 /CH4 SF of about 78, respectively, at 50 °C (a representative temperature of both CO2‐containing streams).  相似文献   

9.
Potassium chabazite (K‐CHA), a typical microporous zeolite with excellent CO2 separating properties, was synthesized with waste fly ash and modified via cation dosing treatments using cesium and zinc cations, respectively. The resulting CHAs were analyzed by XRF, XRD, FT‐IR, SEM, and N2 physisorption, whose CO2 adsorption properties were then tested on the reorganized TGA apparatus. It showed from XRF data that cesium and zinc cations were successfully imported in the original K‐CHA by cation dosing, but the CHA microstructures and morphologies of K‐CHA were perfectly retained as confirmed by XRD, FT‐IR, SEM and N2 physisorption. Since there were still over 9 potassium cations per unit cell in cation dosed Cs‐CHA and Zn‐CHA, they both maintained the favored properties of K‐CHA as “molecular trapdoors”. In the following adsorption experiments, the CO2 uptakes of Cs‐CHA and Zn‐CHA at 333 K and 1 bar, compared with K‐CHA, elevated from 1.70 mmol · g–1 to 2.34 and 2.03 mmol · g–1, and the import of zinc cation also presented a positive effect on the adsorption kinetics. Detailed comparisons suggested modifications with cesium and zinc cations fine‐tune the CHA complying with different mechanisms, and CHAs modified via cation perform more approvingly than fully ion‐exchanged ones, providing us important insights into CHA modifications and applications in practice.  相似文献   

10.
An understanding of the CO2 adsorption mechanisms on small-pore zeolites is of practical importance in the development of more efficient adsorbents for the separation of CO2 from N2 or CH4. Here we report that the CO2 isotherms at 25–75 °C on cesium-exchanged phillipsite zeolite with a Si/Al ratio of 2.5 (Cs-PHI-2.5) are characterized by a rectilinear step shape: limited uptake at low CO2 pressure (PCO2) is followed by highly cooperative uptake at a critical pressure, above which adsorption rapidly approaches capacity (2.0 mmol g−1). Structural analysis reveals that this isotherm behavior is attributed to the high concentration and large size of Cs+ ions in dehydrated Cs-PHI-2.5. This results in Cs+ cation crowding and subsequent dispersal at a critical loading of CO2, which allows the PHI framework to relax to its wide pore form and enables its pores to fill with CO2 over a very narrow range of PCO2. Such a highly cooperative phenomenon has not been observed for other zeolites.  相似文献   

11.
Carbonate hydroxyapatite (CHA) is an analogue of the mineral component of bone tissue. Synthetic CHA is thermally unstable: it readily decomposes with carbon oxide evolution when sintered to ceramics. Its thermal stability has been studied as affected by partial isomorphic substitution of sodium for calcium intended to compensate a possible charge imbalance induced by CO 3 2? groups. Investigative tools were thermogravimetry and FTIR spectroscopy of the condensed vapor produced by heating CHA samples doped with 0.4 and 0.8 wt % sodium. Sodium does not improve the thermal stability of CHA: weight loss on heating increases with increasing sodium level; evolution of carbon oxides occurs at lower temperatures and more intensively. Sodium enhances the generation of B-type defects (CO 3 2? → PO 4 3? substitutions); these defects are thermodynamically less stable than AB-type defects (2CO 3 2? → PO 4 3? , OH? substitutions), which are characteristic of sodium-free CHA.  相似文献   

12.
Direct synthesis of CH3COOH from CH4 and CO2 is an appealing approach for the utilization of two potent greenhouse gases that are notoriously difficult to activate. In this Communication, we report an integrated route to enable this reaction. Recognizing the thermodynamic stability of CO2, our strategy sought to first activate CO2 to produce CO (through electrochemical CO2 reduction) and O2 (through water oxidation), followed by oxidative CH4 carbonylation catalyzed by Rh single atom catalysts supported on zeolite. The net result was CH4 carboxylation with 100 % atom economy. CH3COOH was obtained at a high selectivity (>80 %) and good yield (ca. 3.2 mmol g−1cat in 3 h). Isotope labelling experiments confirmed that CH3COOH is produced through the coupling of CH4 and CO2. This work represents the first successful integration of CO/O2 production with oxidative carbonylation reaction. The result is expected to inspire more carboxylation reactions utilizing preactivated CO2 that take advantage of both products from the reduction and oxidation processes, thus achieving high atom efficiency in the synthesis.  相似文献   

13.
Functional nanoporous materials are widely explored for CO2 separation, in particular, small-pore aluminosilicate zeolites having a “trapdoor” effect. Such an effect allows the specific adsorbate to push away the sited cations inside the window followed by exclusive admission to the zeolite pores, which is more advantageous for highly selective CO2 separation. Herein, we demonstrated that the protonated organic structure-directing agent in the small-pore silicoaluminophosphate (SAPO) RHO zeolite can be directly exchanged with Na+, K+, or Cs+ and that the Na+ form of SAPO-RHO exhibited unprecedented separation for CO2/CH4, superior to all of the nanoporous materials reported to date. Rietveld refinement revealed that Na+ is sited in the center of the single eight-membered ring (s8r), while K+ and Cs+ are sited in the center of the double 8-rings (d8rs). Theoretical calculations showed that the interaction between Na+ and the s8r in SAPO-RHO was stronger than that in aluminosilicate RHO, giving an enhanced “trapdoor” effect and record high selectivity for CO2 with the separation factor of 2196 for CO2/CH4 (0.02/0.98 bar). The separation factor of Na-SAPO-RHO for CO2/N2 was 196, which was the top level among zeolitic materials. This work opens a new avenue for gas separation by using diverse silicoaluminophosphate zeolites in terms of the cation-tailored “trapdoor” effect.

The sodium form of silicoaluminophosphate RHO zeolite exhibits a pronounced cation-tailored “trapdoor” effect, showing an unprecedented selectivity adsorption separation performance for CO2/CH4 and CO2/N2.  相似文献   

14.
在不含有机模板剂体系(OSDAs)中,利用异相晶种(T型分子筛)诱导快速合成出纯相的低硅菱沸石分子筛。采用XRD、SEM、TEM、27Al MAS NMR和紫外拉曼等手段表征分子筛的结构属性和形貌特点。详细研究了菱沸石分子筛的晶化过程以及晶种添加量、nAl2O3/nSi O2、nH2O/nSiO2和碱度对菱沸石分子筛晶化的影响,并探讨T型分子筛晶种诱导合成菱沸石分子筛的晶化机理。原位合成体系中仅形成L型分子筛晶相,而一定量T型分子筛异相晶种的加入诱导溶胶快速制备出纯相的菱沸石分子筛。T型分子筛晶体在一定的水热条件下不断溶解而释放的六元环(6R)和四元环(4R)迅速形成菱沸石分子筛特征笼(CHA笼),抑制了L型分子筛特征单元和特征笼(不含四元环的CAN笼)的形成。  相似文献   

15.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

16.
Zeolite synthesis in contemporary chemical industries is predominantly conducted using organic structure-directing agents (OSDAs), which are chronically hazardous to humans and the environment. It is a growing trend to develop an eco-friendly and nuisanceless OSDA for zeolite synthesis. Herein, choline is employed as a non-toxic and green OSDA to synthesize high silica Y zeolite with SiO2/Al2O3 ratios of 6.5–6.8. The prepared Y zeolite samples exhibited outstanding (hydro)thermal stability at ultrahigh temperature owing to the higher SiO2/Al2O3 ratio. The XRF, SEM, 29Si-NMR and 13Na+ results suggested that choline plays a structure-directing role in the synthesis of Y zeolite, while the feed molar fraction of Na+ is a crucial determinant for the framework SiO2/Al2O3 ratio and the crystal morphology.  相似文献   

17.
Mercury sorbents M–Al–CO3 (M=Mg2+, Mn2+, Fe2+, Cu2+, or Zn2+) were prepared by the coprecipitation of M2 + and Al3+ in an alkaline NaOH/Na2CO3 solution. The formation of a layered double hydroxide structure significantly enhanced Hg removal, uniquely with a suitable binder as a support. Both Hg(NO3 )2 and HgCl2 were used to perform the capture test. The calcined sorbent exhibited superior efficiency, particularly for materials having bivalent states of mixed oxide (MO), such as calcined Mn and Fe. Chloride ions effectively raised the mercury scrubber efficiency, regardless of the type of sorbent. The results show that synthetic sorbents can provide 96% removal of Hg at 200°C. In addition, a suitable binder such as TiO2 can be used as a support for dispersing metal oxides, which significantly decreases the MO content while maintaining a high equivalent capture capacity.  相似文献   

18.
Adsorption of CO2 as probe molecule on alkali-metal zeolites of MFI structure was investigated by joint volumetry–calorimetry. Consideration was given to the interpretation of the heat evolved when a probe molecule is adsorbed on the surface. In particular, the number and the strength of adsorption sites are discussed as functions of zeolite structure, concentration, and nature of extra-framework cation. The adsorption heats (q iso) of CO2 interaction with alkali-metal cations decrease for MFI zeolite with high Si/Al in the sequence Li+ > Na+ > K+ from 54 kJ/mol to 49 and 43 kJ/mol, respectively. In addition, the adsorption heats are influenced by concentration of Al in the framework. This phenomenon is attributed to formation of bridged CO2 adsorption complexes formed between two cations. On the base of quantitative analysis of adsorption processes, presence of geminal adsorption complexes was suggested for adsorption at higher equilibrium pressures.  相似文献   

19.
The dependence of the activity and selectivity of ion-exchanged forms of zeolite X with incorporated cesium process in alkylation of toluene with methanol in the side chain on the nature of the ion-exchanged cations (Na+, Cs+, Mg2+, Zn2+) has been established. It is shown that introduction of Mg2+ and Zn2+ in combination with Cs2CO3 significantly increased the yields of ethylbenzene and styrene in comparison with their yields on alkali forms of zeolite X. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 1, pp. 33–38, January–February, 2006.  相似文献   

20.
Adsorption isotherms of carbon dioxide were measured on cation-exchanged (Li+, Na+, K+, Cs+) MCM-22 zeolite with the molar ratio of Si/Al=15 and series of Na-MCM-22 of Si/Al molar ratios varying in the range from 15 to 40 at 273, 293, 313 and 333 K. Based on the known temperature dependence of CO2 adsorption, isosteric heats of adsorption were calculated. The obtained dependences of isosteric heats related to the amount of CO2 adsorbed have provided detailed insight into the interaction of carbon dioxide molecule with alkali metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号