首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption isotherms of carbon dioxide were measured on cation-exchanged (Li+, Na+, K+, Cs+) MCM-22 zeolite with the molar ratio of Si/Al=15 and series of Na-MCM-22 of Si/Al molar ratios varying in the range from 15 to 40 at 273, 293, 313 and 333 K. Based on the known temperature dependence of CO2 adsorption, isosteric heats of adsorption were calculated. The obtained dependences of isosteric heats related to the amount of CO2 adsorbed have provided detailed insight into the interaction of carbon dioxide molecule with alkali metal cations.  相似文献   

2.
Zeolite crystals with cations present, such as ZSM-5, are widely used for gas sequestration, separations, and catalysis. One possible application is as an adsorbent to separate CO2 from N2 in flue gas mixtures. Typically, the zeolite framework is of a SiO2 composition, but tetravalent Si atoms can be replaced with trivalent Al atoms. This change in valence creates a charge deficit, requiring cations to maintain the charge balance. Experimental studies have demonstrated that cations enhance adsorption of polar molecules due to strong electrostatic interactions. While numerous adsorption studies have been performed for silicalite-1, the all-silica form of ZSM-5, fewer studies on ZSM-5 have been performed. Grand Canonical Monte Carlo simulations were used to study adsorption of CO2 and N2 in Na–ZSM-5 at T = 308 K, which is ZSM-5 with Na+ counter-ions present. The simulations suggest that a lower Si/Al ratio (or higher Na+ and Al content) substantially increases adsorption at low pressures. At high pressures, however, the effect of the Al substitutions is minor, because the Al?/Na+ sites are saturated with guest molecules. Similarly, a lower Si/Al ratio also increases the isosteric heat of adsorption at low loading, but the isosteric heats approach the silicalite-1 reference values at higher loadings. Comparison of simulations and experimental measurements of the adsorption isotherms and isosteric heats points to the importance of carefully considering the role of charge on the Na+ cations, and suggest that the balancing cations in ZSM-5, here Na+, only have partial charges.  相似文献   

3.
Adsorption of CO as a probe molecule on K-FER zeolites differing in Si/Al ratio was investigated. Successful determination of adsorption heats of individual adsorption complexes formed upon adsorption of CO molecules on K-FER zeolites at 300 K by combination of IR spectroscopy with adsorption microcalorimetry is reported. Adsorption heat of bridged carbonyl complexes, where CO molecule interacts with two nearby extraframework K+ cations, was experimentally determined for the first time. It was found that bridged complexes on dual cationic sites exhibit adsorption heat of 34.8 kJ mol?1, whereas monodentate carbonyls on single isolated K+ cation exhibit adsorption heat of only 26.2 kJ mol?1 and adsorption heat of isocarbonyls was 21.5 kJ mol?1.  相似文献   

4.
Various contents of Li+, Ni2+ or Cu2+ were introduced in zeolite NaA by conventional cation exchange. Crystal damages are observed on samples having suffered the lowerpH. The heat of adsorption of CO2 and C2H4 was determined by isothermal calorimetry. Very high initial heats (100–120 kJ mol?1) are found in NaA as well as in Li+ exchanged samples, perhaps due to chemisorption on alkaline cations; they vanish when Ni2+ or Cu2+ replaces more than 20% of Na+, in like manner with Co2+ or ZnI2+. For the adsorption of C2H4, high initial heats are absent in the case of NaA, but gradually appear when divalent cations are introduced. Apart from these strong initial values, the heats of adsorption present a plateauvs. the adsorbed amount. Abnormal low values at the plateau are indicative of crystal damages.  相似文献   

5.
The formation of carbonate-like compounds in adsorption of CO2 on Na-A zeolite does not determine the type of changes in the heats of adsorption for degrees of filling of >1 molecule per unit cell (UC). The results of studies of the electrical properties of Na-A zeolite confirm the concepts that Na+ located in the eight-member rings are not the primary adsorption sites with respect to CO2.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1238–1243, June, 1990.  相似文献   

6.
The dependences of the differential molar isosteric heat of adsorption and entropy of adsorption of CO2 on zeolite NaX were determined in wide temperature (196–423 K) and pressure (0.1 Pa to 5.4 MPa) intervals. In the initial region of adsorption (a < 1 mmol g–1), the differential molar heat of adsorption increases from 40 to 43 kJ mol–1 and then decreases to 33 kJ mol–1. The heat of adsorption remains virtually unchanged at 3 mmol g–1< a < 6.5 mmol g–1 and decreases sharply at high fillings of zeolite micropores (a > 7 mmol g–1). The heat of adsorption was found to be temperature-dependent. The region with the constant heats shrinks with the temperature increase, and the heats begin to decrease at lower fillings of micro pores. The dependences of the change in the differential entropy of the adsorption system on the amount adsorbed were calculated at different temperatures. The specific features of the behavior of the thermodynamic functions of this adsorption system in the initial and medium region of fillings kre associated with interactions of adsorbate molecules with Na+ cations and walls of large cavities. For high fillings, an increase in repulsion forces between adsorbed molecules results in a sharp expansion of the adsorbent and a decrease in the heat of adsorption.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1570–1573, August, 2004.  相似文献   

7.
Ca2+ cations were generally added to facilitate the coagulation of stable fine clay mineral dispersion due to the specific adsorption of their first hydrolysis CaOH+ species at pH near 10. The adsorption of CaOH+ on dry and hydrated (001) basal surface and (010) surface of Na‐montmorillonite was investigated by using density functional theory method combined with the periodic slab model method. The adsorption energies and geometries, Mulliken charge, electron density difference, and density of state were presented and discussed. It was found that the adsorption energy of CaOH+ on (010) edge surface of Na‐montmorillonite (?328.8 kJ/mol) was much larger than that (?126.9 kJ/mol) on (001) basal surface. The presence of waters could increase the adsorption energy of CaOH+ on (001) surface but affect that on (010) surface slightly. The protons in Si–OH and Al–OH2 groups as well as the OH2 ligands in Al–OH2 group on (010) edge surface were easily dissociated and coordinated to CaOH+ to form new waters. CaOH+ was the most steady adsorption species among CaOH+, Ca2+ cation, and H2O molecule on both (001) and (010) surfaces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Nature and population of Li+ cationic sites in MCM-22 zeolite and its pillared form (MCM-36) were investigated by means of adsorption of CO as a probe molecule. CO stretching frequency and adsorption heat were measured by FTIR spectroscopy and adsorption microcalorimetry. Intrazeolitic carbonyl complexes on Li+ cations in MCM-22 and MCM-36 are characterized by two main vibrational bands at 2,195 and 2,188 cm?1. Band at higher wavenumbers is ascribed to carbonyls on Li+ ions coordinated only to two oxygen atoms at the intersection of 10-ring channels and interacting with CO molecule by energy around 45 kJ mol?1. Band at 2,188 cm?1 was assigned to the carbonyls on Li+ cations located on top of 5 or 6-rings on the channel walls and coordinated to three or four oxygen atoms, interacting with CO molecule by energy 33–36 kJ mol?1. Effect of pillaring and layered form of zeolite on nature and population of Li+ cationic sites is also discussed, as well as the formation of dicarbonyl complexes.  相似文献   

9.
The heat of adsorption of C02on NaZSM-5 at zero occupancy is 50.0 kJ/mole. The differential heats have two linearly descending segments, corresponding to the formation of two types of adsorption complexes with one or two C02 molecules, on the average. The heat of adsorption on silicalite coincides with the heat of adsorption of CO2 on the noncationic segment of the NaZSM-5 zeolite structure (28–29 kJ/mole). The adsorbate-adsorbate interaction forces are not evident on the zeolites up to 1.5 mmole/g occupancy. The isotherms for the adsorption of C02 on zeolite NaZSM-5 and silicalite at 303 K in the occupancy region of 0–1.5 and 0–0.5 mmole/g are completely described by VMOT equations.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2636–2638, November, 1989.  相似文献   

10.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

11.
Ion exchange was made on MCM-22 and MCM-49 zeolites with different Si/Al molar ratios, with Li+, Na+, K+, and Cs+ ions and the study of the influence of alkali metal cations on CO2 adsorption properties was performed. The degree of ion-exchange decreased for larger cations (Cs+) apparently due to steric hindrances. The exchange with different cations led to a decrease in the surface area and the micropore volume. Our study shows that the adsorption capacity of the tested zeolites depends significantly on the nature and the concentration of the charge-compensating cations. The highest CO2 adsorption capacity was obtained on the MWW zeolites with the lowest Si/Al molar ratio and the Li+ or K+ cations.  相似文献   

12.
In this study, NaX synthetic zeolite was modified by following the conventional cation exchange method at 70°C. 82, 81, 79 and 48% of sodium were exchanged with Li+, K+, Ca2+ and Ce3+, respectively. Thermal analysis data obtained by TG/DSC was used to evaluate the dehydration behavior of the zeolites. The strongest interaction with water and the highest dehydration enthalpy (ΔH) value were found for Li-exchanged form and compared with the other forms. The temperature required for complete dehydration increased with decreasing cation size (cation size: K+>Ce3+>Ca2+>Na+>Li+). CO2 adsorption at 5 and 25°C was also studied and the virial model equation was used to analyze the experimental data to calculate the Henry’s law constant, K o and isosteric heat of adsorption at zero loading Q st. K o values decreased with increasing temperature and the highest Qst was obtained for K rich zeolite. It was observed that both dehydration and CO2 adsorption properties are related to cation introduced into zeolite structure.  相似文献   

13.
Lewis acidic properties of transition aluminas whose surfaces have been doped with alkaline-earth metal cations (Ca2+ and Ba2+) were studied by means of the room temperature adsorption of carbon monoxide. The vibrational features of CO adsorbed at the surface of doped aluminas were investigated by IR spectroscopy in comparison with pure parent aluminas, while the quantitative and energetic features were studied by adsorption microcalorimetry. Various CO adspecies were found to form at the surface of both pure and doped-alumina, owing to the structural heterogeneity of the Al2O3 surface and to the presence of alkaline-earth metal cations. The surface heterogeneity was revealed by different vco stretching frequencies, namely vco≈2230, 2218 and 2205 cm−1 for coordinatively unsaturated tetrahedral Al3+ cations in different crystallographic configurations, and vco≈2186 and 2172 cm−1 for coordinatively unsaturated Ca2+ and Ba2+ cations, respectively. Heats of adsorption of ≈80, 70 and 55 kJ/mol were assigned to the formation of Al3+/CO complexes, ≈45 kJ/mol for Ca2+/CO and ≈30 kJ/mol for Ba2+/CO complexes. The latter value was estimated through a correlation curve existing between vco stretching frequencies and adsorption enthalpies. This correlation, already proposed in the past for CO adsorbed on non-d/d0/d10 metal cations, has been revisited and confirmed here, by including Al2O3 data for which an apparent lack of correlation between the two parameters was first observed. With respect to pure alumina, the population of Lewis acidic sites was found to be significantly depressed by the presence of alkaline-earth cus metal cations. These acidic sites are intrinsically weaker than tetrahedral cus Al3+ cations, as witnessed by smaller upward shifts of the vco stretching frequencies with respect to CO gas and lower heats of adsorption, in accordance with expectations from the charge/ionic radius ratios. Ca2+ cations were found to compete in adsorbing CO with Al3+ cations more efficiently than the larger Ba2+ cations. In the case of CaO/Al2O3 systems outgassed at 1023 K, a thin surface layer of calcium aluminate, not detected by XRD or HRTEM, was suggested to form.  相似文献   

14.
The heats of adsorption of lower alcohols on NaZSM-5 have a stepwise appearance and each step corresponds to the stoichiometric formation of adsorption complexes of Na+ ions with from one to four alcohol molecules. All the adsorption complexes are located at zeolite channel intersections, while the alkyl groups enter these channels. The heats of adsorption of alcohols on NaZSM in the region of the formation of adsorption complexes with cations markedly exceed the heats of adsorption on silicalite, while on the noncationic part of the NaZSM-5 structure, they are identical to the heats of adsorption on silicalite. The mean molar integral adsorption entropies of alcohols are significantly less than the entropy of the liquid. The adsorbed molecules are in a solidlike state. The isotherms for the adsorption of alcohols on NaZSM-5 are completely described by VMOT equations.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2633–2635, November, 1989.  相似文献   

15.
The interaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix5) with alkali-metal cations (Li+, Na+, K+) in aprotic medium (acetonitrile) has been investigated. Conductance measurements demonstrated that 1:1 metal cation:ligand stoichiometries are found with these cations in this solvent. 7Li and 23Na NMR experiments were carried out by titration of the metal cation solutions with Kryptofix5 solution in CD3CN + CH3CN at 298 K. Thermodynamic parameters of complexation for this ligand and alkali-metal cations in acetonitrile at 278–308 K were derived from titration conductometry. The highest stability is found for sodium complex. The complexation sequence, based on the value of log K at 278–308 K was found to be Na+ > K+ > Li+.  相似文献   

16.
《Fluid Phase Equilibria》2005,227(2):197-213
CO2 solubility was measured in a wetted-wall column in 0.6–3.6 molal (m) piperazine (PZ) and 2.5–6.2 m potassium ion (K+) at 40–110 °C. Piperazine speciation was determined using 1H NMR for 0.6–3.6 m piperazine (PZ) and 3.6–6.2 m potassium ion (K+) at 25–70 °C. The capacity of CO2 in solution increases as total solute concentration increases and compares favorably with estimates for 7 m (30 wt.%) monoethanolamine (MEA). The presence of potassium in solution increases the concentration of CO32−/HCO3 in solution, buffering the solution. The buffer reduces protonation of the free amine, but increases the amount of carbamate species. These competing effects yield a maximum fraction of reactive species at a potassium to piperazine ratio of 2:1.A rigorous thermodynamic model was developed, based on the electrolyte nonrandom two-liquid (ENRTL) theory, to describe the equilibrium behavior of the solvent. Modeling work established that the carbamate stability of piperazine and piperazine carbamate resembles primary amines and gives approximately equal values for the heats of reaction, ΔHrxn (18.3 and 16.5 kJ/mol). The pKa of piperazine carbamate is twice that of piperazine, but the ΔHrxn values are equivalent (∼−45 kJ/mol). Overall, the heat of CO2 absorption is lowered by the formation of significant quantities of HCO3 in the mixed solvent and strongly depends on the relative concentrations of K+ and PZ, ranging from −40 to −75 kJ/mol.  相似文献   

17.
Equilibrated thermodesorption (TPED) and quasi-equilibrated temperature programmed desorption and adsorption (QE-TPDA) were employed as methods for studying the influence of different extraframework cations (Na+, K+, Li+, Cu2+, Zn2+, or Mg2+) on adsorption of n-hexane on ZSM-5 zeolite with high Al content (Si/Al = 15). Considerable influence of the cations on both initial adsorption in the micropores and ordering of the adsorbed molecules, occurring at high coverages, has been observed. This influence is reflected by the values of the adsorption enthalpy and entropy, determined by fitting the dual site Langmuir (DSL) adsorption function to the equilibrated thermodesorption profiles. However, no clear correlation between the determined parameters and properties of the extraframework cations could be found.  相似文献   

18.
Affinity capillary electrophoresis (ACE) and pressure‐assisted ACE were employed to study the noncovalent molecular interactions of antamanide (AA), cyclic decapeptide from the deadly poisonous fungus Amanita phalloides, with univalent (Li+, Na+, K+, and NH4+) and divalent (Mg2+ and Ca2+) cations in methanol. The strength of these interactions was quantified by the apparent stability constants of the appropriate AA‐cation complexes. The stability constants were calculated using the nonlinear regression analysis of the dependence of the effective electrophoretic mobility of AA on the concentration of the above ions in the BGE (methanolic solution of 20 mM chloroacetic acid, 10 mM Tris, pHMeOH 7.8, containing 0–50 mM concentrations of the above ions added in the form of chlorides). Prior to stability constant calculation, the AA effective mobilities measured at actual temperature inside the capillary and at variable ionic strength of the BGEs were corrected to the values corresponding to the reference temperature of 25°C and to the constant ionic strength of 10 mM. From the above ions, sodium cation interacted with AA moderately strong with the stability constant 362 ± 16 L/mol. K+, Mg2+, and Ca2+ cations formed with AA weak complexes with stability constants in the range 37–31 L/mol decreasing in the order K+ > Ca2+ > Mg2+. No interactions were observed between AA and small Li+ and large NH4+ cations.  相似文献   

19.
The high resolution adsorption isotherms of N2 (77.4 K) and Ar (87.3 K) have been measured for two nonporous silicas with different silanol contents (3.3 and 0.35 OH/nm2) and for two MFI zeolite with different Al contents (Si/Al=12.5 and 500). Silanol groups and Al sites (acid sites) gives the significant effect on the N2 isotherms at submonolayer, but the Ar isotherms are independent of silanols and Al sites. The Ar isotherms, therefore, are preferable in calculation of microporosity of zeolites. The N2 and Ar isotherms for MFI zeolite (Si/Al=500) have been measured at temperatures of 77–94 K, from which the differential adsorption energies of N2 and Ar are calculated. The interaction of N2 with channel surface of MFI zeolite is greater than that of Ar in the range of α s =0.1–0.7. The hystereses are detected for the N2 isotherm in p/p o=0.1–0.3 at 77.4 K and for the Ar isotherm in p/p o=3×10−4–2×10−3 at 87.3 K. However, it is difficult to explain the hysteresis phenomenon using differential adsorption energy.  相似文献   

20.
Summary Batch equilibrium and kinetic measurements were performed for Cs+ exchange in silicotitanate zeolite (Ionsiv® TIE-96) at 30 and 60 °C. The Langmuir isotherm equation provided a good fit of the equilibrium data. The heats of exchange reaction between Cs+ in the aqueous solution and Na+ in the zeolite structure were derived from the equilibrium data. The results indicate that the exchange mechanism is different from that of physical adsorption on heterogeneous materials. The apparent diffusion coefficients and activation energy were derived from the kinetic data and the values obtained for inter-diffusion of Cs+ and Na+ cations in the zeolite structure were 1.33 . 10-12 and 1.04 . 10-12 cm2 . s-1 at 30 and 60 °C, respectively. The activation energy for Cs+ was 1.7 kcal/mol, suggesting that the Cs+ cation can access easily all the sites in the zeolite framework. Thus, the exchange of Cs+ with Na+ in the zeolite was not hindered by ion-sieve effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号