首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

2.
A series of ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene (NHC) ligands has been prepared and fully characterized. These complexes are readily accessible in one or two steps from commercially available [(PCy(3))(2)Cl(2)Ru==CHPh]. All of the complexes reported herein promote the ring-closing of diethyldiallyl and diethylallylmethallyl malonate, the ring-opening metathesis polymerization of 1,5-cyclooctadiene, and the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, in some cases surpassing in efficiency the existing second-generation catalysts. Especially in the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, all new catalysts demonstrate similar or higher activity than the second-generation ruthenium catalysts and, most importantly, afford improved E/Z ratios of the desired cross-product at conversion above 60 %. The influence of the unsymmetrical NHC ligands on the initiation rate and the activation parameters for the irreversible reaction of these ruthenium complexes with butyl vinyl ether were also studied. Finally, the synthesis of the related chlorodicarbonyl(carbene) rhodium(I) complexes allowed for the study of the electronic properties of the new unsymmetrical NHC ligands that are discussed in detail.  相似文献   

3.
A well-defined silica-supported cationic W imido alkylidene was prepared through surface organometallic chemistry. This catalyst shows preferential activity towards α- over internal olefins, which is atypical for W-based catalysts, but consistent with the strong σ-donating ability of the NHC ancillary ligand. Complementing the studies on tungsten-based d0 metathesis catalysts, the silica-supported cationic W imido alkylidene displays the highest activity among W imido catalysts for α-olefins and shows improved selectivity for this class of olefins compared to Mo-based catalysts.  相似文献   

4.
A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy3)2Cl2Ru=CHPh or (PCy3)Cl2Ru=CH(o-iPrO-Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective.  相似文献   

5.
We synthesized the first N‐heterocyclic carbene (NHC) complexes of Schrock’s molybdenum imido alkylidene bis(triflate) complexes. Unlike existing bis(triflate) complexes, the novel 16‐electron complexes represent metathesis active, functional‐group‐tolerant catalysts. Single‐crystal X‐ray structures of two representatives of this novel class of Schrock catalysts are presented and reactivity is discussed in view of their structural peculiarities. In the presence of monomer (substrate), these catalysts form cationic species and can be employed in ring‐closing metathesis (RCM), ring‐opening metathesis polymerization (ROMP), as well as in the cyclopolymerization of α,ω‐diynes. Monomers containing functional groups, which are not tolerated by the existing variations of Schrock’s catalyst, e.g., sec‐amine, hydroxy, and carboxylic acid moieties, can be used. These catalysts therefore hold great promise in both organic and polymer chemistry, where they allow for the use of protic monomers.  相似文献   

6.
综述了近几年来以N-杂环卡宾为配体的金属络合物催化有机合成的反应。  相似文献   

7.
This paper reports the synthesis and characterization of a variety of ruthenium complexes coordinated with phosphine and N-heterocyclic carbene (NHC) ligands. These complexes include several alkylidene derivatives of the general formula (NHC)(PR(3))(Cl)(2)Ru=CHR', which are highly active olefin metathesis catalysts. Although these catalysts can be prepared adequately by the reaction of bis(phosphine) ruthenium alkylidene precursors with free NHCs, we have developed an alternative route that employs NHC-alcohol or -chloroform adducts as "protected" forms of the NHC ligands. This route is advantageous because NHC adducts are easier to handle than their free carbene counterparts. We also demonstrate that sterically bulky bis(NHC) complexes can be made by reaction of the pyridine-coordinated precursor (NHC)(py)(2)(Cl)(2)Ru=CHPh with free NHCs or NHC adducts. Two crystal structures are presented, one of the mixed bis(NHC) derivative (H(2)IMes)(IMes)(Cl)(2)Ru=CHPh, and the other of (PCy(3))(Cl)(CO)Ru[eta(2)-(CH(2)-C(6)H(2)Me(2))(N(2)C(3)H(4))(C(6)H(2)Me(3))], the product of ortho methyl C-H bond activation. Other side reactions encountered during the synthesis of new ruthenium alkylidene complexes include the formation of hydrido-carbonyl-chloride derivatives in the presence of primary alcohols and the deprotonation of ruthenium vinylcarbene ligands by KOBu(t). We also evaluate the olefin metathesis activity of NHC-coordinated complexes in representative RCM and ROMP reactions.  相似文献   

8.
Vanadium-based catalysts have shown activity and selectivity in ring-opening metathesis polymerization of strained cyclic olefins comparable to those of Ru, Mo, and W catalysts. However, the application of V alkylidenes in routine organic synthesis is limited. Here, we present the first example of ring-closing olefin metathesis catalyzed by well-defined V chloride alkylidene phosphine complexes. The developed catalysts exhibit tolerance to various functional groups, such as an ether, an ester, a tertiary amide, a tertiary amine, and a sulfonamide. The size and electron-donating properties of the imido group and the phosphine play a crucial role in the stability of active intermediates. Reactions with ethylene and olefins suggest that both β-hydride elimination of the metallacyclobutene and bimolecular decomposition are responsible for catalyst degradation.  相似文献   

9.
Various symmetrically and asymmetrically substituted N-heterocyclic carbene (NHC) ligands bearing aliphatic nitrogen-containing side groups have been synthesised. In our attempts to isolate the corresponding second-generation Grubbs catalysts, we were unsuccessful when using the symmetrical aliphatic NHC ligands. For the asymmetrical ligands bearing an aliphatic moiety on one side and an aromatic mesityl group on the other side, substitution of a phosphine ligand was achieved. The performance of a so-formed series of Ru-based metathesis initiators has been evaluated for the ring-opening metathesis polymerisation (ROMP) of cycloocta-1,5-diene and the ring-closing metathesis (RCM) of diethyl diallylmalonate.  相似文献   

10.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A series of cyclic Ru-alkylidene catalysts have been prepared and evaluated for their efficiency in ring-expansion metathesis polymerization (REMP). The catalyst structures feature chelating tethers extending from one N-atom of an N-heterocyclic carbene (NHC) ligand to the Ru metal center. The catalyst design is modular in nature, which provided access to Ru complexes having varying tether lengths, as well as electronically different NHC ligands. Structural impacts of the tether length were unveiled through (1)H NMR spectroscopy as well as single-crystal X-ray analyses. Catalyst activities were evaluated via polymerization of cyclooctene, and key data are provided regarding propagation rates, intramolecular chain transfer, and catalyst stabilities, three areas necessary for the efficient synthesis of cyclic poly(olefin)s via REMP. From these studies, it was determined that while increasing the tether length of the catalyst leads to enhanced rates of polymerization, shorter tethers were found to facilitate intramolecular chain transfer and release of catalyst from the polymer. Electronic modification of the NHC via backbone saturation was found to enhance polymerization rates to a greater extent than did homologation of the tether. Overall, cyclic Ru complexes bearing 5- or 6-carbon tethers and saturated NHC ligands were found to be readily synthesized, bench-stable, and highly active catalysts for REMP.  相似文献   

12.
New ruthenium carbene complexes with chelating N- and S-benzylidene ligands were synthesized by the reactions of second- and third-generation Grubbs catalysts with ortho-vinylbenzyl-substituted amines or sulfides. These complexes were shown to exhibit catalytic activity in ring-opening metathesis polymerization and ring-closing metathesis.  相似文献   

13.
A modular and flexible strategy towards the synthesis of N-heterocyclic carbene (NHC) ligands bearing Brønsted base tags has been proposed and then adopted in the preparation of two tagged NHC ligands bearing rests of isonicotinic and 4-(dimethylamino)benzoic acids. Such tagged NHC ligands represent an attractive starting point for the synthesis of olefin metathesis ruthenium catalysts tagged in non-dissociating ligands. The influence of the Brønsted basic tags on the activity of such obtained olefin metathesis catalysts has been studied.  相似文献   

14.
Summary: Advances in design of latent ruthenium phenylindenylidene catalysts bearing salicylaldimine ligands for ring-opening metathesis polymerization are described. The presence of the substituents in ortho position in N-aryl ring of salicylaldimine ligand has been found to be the main factor determining the catalyst stability. The best of the studied catalysts after acid activation offers activity comparable to that of the dichloride systems in ring-opening metathesis polymerization of DCPD, while maintaining very high stability in the monomer solution.  相似文献   

15.
Liquid or supercritical carbon dioxide (scCO(2)) is a versatile reaction medium for ring-opening metathesis polymerization (ROMP) and ring-closing olefin metathesis (RCM) reactions using well-defined metal catalysts. The molybdenum alkylidene complex 1 and ruthenium carbenes 2 and 3 bearing PCy(3) or N-heterocyclic carbene ligands, respectively, can be used and are found to exhibit efficiency similar to that in chlorinated organic solvents. While compound 1 is readily soluble in scCO(2), complexes 2 and 3 behave like heterogeneous catalysts in this reaction medium. Importantly, however, the unique properties of scCO(2) provide significant advantages beyond simple solvent replacement. This pertains to highly convenient workup procedures both for polymeric and low molecular weight products, to catalyst immobilization, to reaction tuning by density control (RCM versus acyclic diene metathesis polymerization), and to applications of scCO(2) as a protective medium for basic amine functions. The latter phenomenon is explained by the reversible formation of the corresponding carbamic acid as evidenced by (1)H NMR data obtained in compressed CO(2). Together with its environmentally and toxicologically benign character, these unique physicochemical features sum up to a very attractive solvent profile of carbon dioxide for sustainable synthesis and production.  相似文献   

16.
[reaction: see text] N-Heterocyclic carbene (NHC) complexes with silver were investigated as sources of unsaturated NHC carbene catalysts via thermal decomposition. The NHC complex (1-ethyl-3-methylimidazol-2-ylidene)silver(I) chloride is an ionic liquid, and was found to catalyze the ring-opening polymerization of lactide at elevated temperatures to give narrowly dispersed polylactide of predictable molecular weight. Silver-carbene complexes can also be used for the catalysis of small molecule transesterification reactions. Thermolysis of the silver complexes in the presence of CS(2) yielded the zwitterionic CS(2) adducts of the carbene, implicating the intermediacy of the free carbene in these reactions.  相似文献   

17.
Since the discovery that transition metals salts mixed with organoaluminum reagents catalyze the polymerization of ethylene to crystalline polyethylene, organo-metallic complexes and reagents have played a major role in the polymer industry [1]. Over the past 20 years a tremendous amount has been learned about the structures and mechanisms of reactions of complexes related to those proposed to be active in these systems [2]. In the related area of olefin metathesis and ring-opening metathesis polymerization (ROMP), metal carbenes and metallacycles were proposed intermediates, and over the past few years a number of complexes with these structures that will catalyze the olefin metathesis reaction have been prepared and studied [3]. In contrast to the ill-defined classical catalysts based on Ziegler-type catalysts, these are living polymerization systems. This was first observed using Tebbe-type reagents [4].  相似文献   

18.
A study on the enyne metathesis reaction leading to the formation cyclic compounds using ruthenium–indenylidene complexes is presented. Several 1,11‐dien‐6‐ynes have been subjected to ruthenium metathesis cyclization by using ruthenium–indenylidene complexes bearing various phosphine and N‐heterocyclic carbene (NHC) ligands. Interestingly, for some substrates chemodivergent metathesis occurs and is a function of the catalyst employed. This led us to investigate the competing “ene‐then‐yne” or “yne‐then‐ene” reaction pathways apparently at play in these systems using both experimental observations and DFT calculations. Experimental and computational studies were found in good agreement and permit to conclude that for phosphine‐containing catalysts, the “ene‐then‐yne” pathway is exclusively adopted. On the other hand, for catalysts bearing NHC ligands, both pathways are possible.  相似文献   

19.
The synthesis of novel ruthenium-based metathesis catalysts containing the saturated 1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene ligand, that is, [RuCl2(NHC)[=CH-2-(2-PrO)-5-NO(2)-C6H3]] (1) and [Ru(CF3COO)2(NHC)[=CH-2-(2-PrO)-5-NO2-C6H3]] (2) (NHC=1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) is described. Both catalysts are highly active in ring-closing metathesis (RCM) and ring-opening cross-metathesis (ROCM). Compound 1 shows moderate activity in enyne metathesis. Compound 2 is not applicable to enyne metathesis since it shows high activity in the cyclopolymerization of diethyl dipropargylmalonate (DEDPM). Poly(DEDPM) prepared by the action of 2 consists of 95% five-membered rings, that is, poly(cyclopent-1-enevinylene)s, and 5 % of six-membered rings, that is, poly(cyclohex-1-ene-3-methylidene)s. The polymerization proceeds in a nonliving manner and results in polyenes with broad polydispersities (1.9< or =PDI< or =2.3). Supported analogues of 2 were prepared by immobilization on hydroxymethyl-Merrifield resin and a monolithic support derived from ring-opening-metathesis polymerization (ROMP). Catalyst loadings of 1 and 2.5%, respectively, were obtained. Both supported versions of 2 showed excellent reactivity. With 0.24-2% of the supported catalysts, yields in RCM and ROCM were in the range of 76-100%. Leaching of ruthenium was low and resulted in Ru contaminations of the products of less than 0.000014% (0.14 ppm).  相似文献   

20.
We provide an overview on the state‐of‐the‐art in transition‐metal complexes formed with water‐soluble NHC ligands. Paths to introducing water solubility by ligand design are elucidated and some general properties of water‐soluble NHC complexes are highlighted. The enhanced hydrophilicity of water‐soluble catalysts offers advantages in applications. While studies based on C? C coupling reactions still dominate the field, recent reports show water‐soluble NHC complexes can be applied in metathesis and hydrogenation reactions and turn out to be among the best performing catalysts known. Nevertheless, wide areas of this young field remain to be investigated, offering great potential for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号