首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion‐induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co‐assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co‐assembly. The structure provides a model for nucleic acid/amyloid co‐assembly as well as insight into the energetic determinants involved in templating amyloid assembly.  相似文献   

2.
在苯乙烯单体的对位引入具有亲水性链段的乙二醇单元, 利用可逆加成断裂链转移聚合方法(RAFT), 可控合成了几种新的两亲性嵌段共聚物聚(4-乙烯基苄基乙二醇单甲醚)-b-聚丙烯酸(PMnEOS-b-PAA, n=1~3), 对其温敏和pH敏性质进行了初步研究. 同时, 研究了PMnEOS-b-PAA分别在亲水性环境下(四氢呋喃/水)和亲脂性环境下(四氢呋喃/甲苯)自组装体的形貌. 将聚对二乙二醇单甲醚苯乙烯-b-聚丙烯酸与聚苯乙烯-b-聚丙烯酸按质量比1:1[m(PMDEOS-b-PAA)/m(PS-b-PAA)=1:1]共混进行共组装, 在四氢呋喃/甲苯体积比为2∶1的混合溶剂中, 发现了一类新型具有均匀分布内部孔道且表面光滑的球形组装体. 进一步研究了该组装体的可重复性和组装机理, 为其后期应用于工业上的负载催化、 小分子识别与释放提供了一种新的策略.  相似文献   

3.
The bis(pyrene)-Lys-Leu-Val-Phe-Phe-Gly-poly ethylene glycol (BP-KLVFFG-PEG) based nanoparticles capture Aβ42 by recognition and co-assembly, the length of PEG chain in which leads to different morphologies of coassemblies and capture efficiency. The co-assembly strategy shows a decrease of cytotoxicity, potentially for Alzheimer's disease treatment.  相似文献   

4.
Herein, we utilized nucleic acids induced peptide co-assembly strategy to develop novel nucleic acids induced peptide-based AIE (NIP-AIE) nanoparticles. Strong fluorescent of AIE could be observed when a little amount of nucleic acids was added into the peptide solution, and the intensity could be regulated by the concentration of nucleic acids. This AIE nanoparticle with good biocompatibility could achieve fast cell imaging. It is also proved that the fluorescence intensity of AIE decreased with time, which indicates that the reducible cross-linkers of Wpc peptide by GSH and nanoparticles gradually disintegrate in cell. Based on the different of AIE fluorescence signals which regulated by the formation and disintegration of nanoparticles, this AIE system is expected to be used for real-time monitoring of drug release from peptide-based nano carriers in vivo or in vitro, and may provide a new platform for the construction of other organic AIE nanoparticles.  相似文献   

5.
Understanding and controlling multicomponent co-assembly is of primary importance in different fields, such as materials fabrication, pharmaceutical polymorphism, and supramolecular polymerization, but these aspects have been a long-standing challenge. Herein, we discover that liquid–liquid phase separation (LLPS) into ion-cluster-rich and ion-cluster-poor liquid phases is the first step prior to co-assembly nucleation based on a model system of water-soluble porphyrin and ionic liquids. The LLPS-formed droplets serve as the nucleation precursors, which determine the resulting structures and properties of co-assemblies. Co-assembly polymorphism and tunable supramolecular phase transition behaviors can be achieved by regulating the intermolecular interactions at the LLPS stage. These findings elucidate the key role of LLPS in multicomponent co-assembly evolution and enable it to be an effective strategy to control co-assembly polymorphism as well as supramolecular phase transitions.  相似文献   

6.
Innovative fluorescence security technologies for paper-based information are still highly pursued nowadays because data leakage and indelibility have become serious economic and social problems. Herein, we report a novel transient bio-fluorochromic supramolecular co-assembly mediated by a hydrolytic enzyme (ALP: alkaline phosphatase) towards rewritable security printing. A co-assembly based on the designed tetrabranched cationic diethynylanthracene monomer tends to be formed by adding adenosine triphosphate (ATP) as the biofuel. The resulting co-assembly possesses a time-encoded bio-fluorochromic feature, upon successively hydrolyzing ATP with ALP and re-adding new batches of ATP. On this basis, the dynamic fluorescent properties of this time-encoded co-assembly system have been successfully enabled in rewritable security patterns via an inkjet printing technique, providing fascinating potential for fluorescence security materials with a biomimetic mode.

Rewritable security printing has been successfully achieved based on a biofuel-driven transient supramolecular co-assembly mediated by an enzyme, providing fascinating potential for artificial functional materials with a biomimetic mode.  相似文献   

7.
Abstract— The mechanism of photodecomposition of nucleic acid bases in a neutral aqueous solution upon two-step excitation of high-lying electronic states by a powerful laser UV radiation is discussed. Experimental dependences of photodecomposition efficiency versus UV radiation intensity are measured both under picosecond and nanosecond laser UV irradiations. By comparison of experimental dependences with a theoretical model, we obtain some characteristics of excited states, such as lifetime t1 of the first electronic excited state S1 intersystem crossing yield φ, photosensitivity from an intermediate excited state and others for all five nucleic acid bases.  相似文献   

8.
Despite a growing interest in DNA nanomaterials,their simple synthesis remains a challenge.A simple and general strategy for constructing DNA-based nanomaterials by metal ion coordination is reported.The me-tal-DNA nanoparticles(NPs)could be synthesized with DNA molecules of diverse sequence and various metal ions of intrinsic property,resulting in multifunctional NPs with the combined advantages of both inorganic and DNA building blocks.It is demonstrated that the hybrid metal-DNA NPs could be engineered for magnetic resonance and luminescence imaging,encapsulation of multifarious nucleic acids with controlled ratio,and co-assembly with small drug molecules.Furthermore,because these metal-DNA NPs exhibited enhanced cellular uptake compared to free synthetic DNA,they hold potential for applications in diagnostics and therapeutics.  相似文献   

9.
This study demonstrates the self‐assembly of inhibitor/enzyme‐tethered nucleic acid fragments or enzyme I‐, enzyme II‐modified nucleic acids into functional nanostructures that lead to the controlled inhibition of the enzyme or the activation of an enzyme cascade. In one system, the anti‐cocaine aptamer subunits are modified with monocarboxy methylene blue (MB+) as the inhibitor and with choline oxidase (ChOx). The cocaine‐induced self‐assembly of the aptamer subunits complex results in the inhibition of ChOx by MB+. In a further configuration, two nucleic acids of limited complementarity are functionalized at their 3′ and 5′ ends with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, or with MB+ and ChOx. In the presence of a target DNA sequence, synergistic complementary base‐pairing occurs, thus leading to stable supramolecular Y‐shaped nanostructures of the nucleic acid units. A GOx/HRP bienzyme cascade or the programmed inhibition of ChOx by MB+ is demonstrated in the resulting nucleic acid nanostructures. A quantitative theoretical model that describes the nucleic acid assemblies and that results in the inhibition of ChOx by MB+ or in the activation of the GOx/HRP cascade, respectively, is provided.  相似文献   

10.
Lipid domains in mammalian plasma membranes serve as platforms for specific recruitment or separation of proteins involved in various functions. Here, we have applied this natural strategy of lateral separation to functionalize lipid membranes at micrometer scale in a switchable and reversible manner. Membrane-anchored peptide nucleic acid and DNA, differing in their lipophilic moieties, partition into different lipid domains in model and biological membranes. Separation was visualized by hybridization with the respective complementary fluorescently labeled DNA strands. Upon heating, domains vanished, and both lipophilic nucleic acid structures intermixed with each other. Reformation of the lipid domains by cooling led again to separation of membrane-anchored nucleic acids. By linking appropriate structures/functions to complementary strands, this approach offers a reversible tool for triggering interactions among the structures and for the arrangement of reactions and signaling cascades on biomimetic surfaces.  相似文献   

11.
Because the fluorescence of azur A can be quenched by adding nucleic acid, a sensitive fluorometric method for determination of nucleic acids at nanogram levels was established. Using optimal conditions, the calibration curves were linear in the range of 0-6.0 microg/mL for calf thymus deoxyribonucleic acid (ct DNA) and 0-7.0 microg/mL for herring sperm DNA (hs DNA). The limits of determination were 3.5 and 3.8 ng/mL, respectively, which shows the high sensitivity of this method. Triton X-100 microemulsion was applied as a sensitive media to enhance the sensitivity. The binding mode concerning the interactions of azur A with nucleic acids was also studied and the association constant with different binding numbers was obtained. The method has been applied to the determination of nucleic acid in both synthetic and real samples, such as cauliflower and pork liver, with satisfactory results.  相似文献   

12.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

13.
This work presents an important example of novel hybrid vesicles with pH-triggered transmembrane channels prepared by co-assembly of poly(acrylic acid)-g-poly(monomethoxy ethylene glycol) (PAAc-g-mPEG) with a cationic lipid, didodecyldimethylammonium bromide (DDAB), via electrostatic interaction for effective doxorubicin (DOX) release.  相似文献   

14.
A key feature in more than twenty amyloid-related diseases is the aggregation of intra-and/or extracellular misfolded proteins as amyloid fibrils. Therefore, preventing or reversing amyloid aggregation by using of small molecules is considered as useful approaches to the treatment of these diseases. We have evaluated the ability of safranal and crocin, to inhibit amyloid self-assembly of hen egg white lysozyme (HEWL), as an in vitro model system. Structural properties of HEWL in the presence of these compounds were investigated individually using thioflavin T, anilinonaphthalene-8-sulfonic acid fluorescence assays, far-UV circular dichroism and scanning electron microscopy as well as docking method. Our results showed that incubation of HEWL with either crocin or safranal at various concentrations leads a significant inhibition in the rate of amyloid formation. Docking analysis revealed crocin and safranal interact with the central hydrophobic region of lysozyme through van der Waals interaction. Hydroxyl group in crocin through hydrogen bonds connected to the several hydrophilic amino acids of lysozyme, while in safranal there are just one aldehyde group that through hydrogen bonds connected to aspartic acid in lysozyme. It can be concluded that both hydrophobic and hydrophilic groups contribute to lower lysozyme fibril accumulation.  相似文献   

15.
This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based nucleic acid sensor could discriminate as low as 5 fM (signal-to-noise (S/N) 3) of synthesized carcinoembryonic antigen (CEA) gene fragments and showed a 1000-fold increase in detection limit compared to the off-chip test. In addition, using spiked colorectal cancer cell lines (HT29) in the blood as a model system, the detection limit of this chip-based approach was found to be as low as 1 HT29 in 1 mL blood sample. This microfluidic bead-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence.  相似文献   

16.
Two-dimensional (2D) Au(I)-thiolate assemblies are a special type of material that can balance high structural stability and rich surface functionality, which shows promising prospects in both fundamental research and applications. Co-assembly of multiple ligands is a facile way to further enrich the surface properties and functions, and expand their application potentials. In this work, taking 3-mercaptopropionic acid (MPA), cysteine (Cys) and 1-thioglycerol (TGO) as example ligands, we studied in detail the possibility to co-assemble them into one nanosheet. Although the three ligands have significantly different controllability and pathways when self-assembling individually with Au(I), they can still be effectively co-assembled by reacting with HAuCl4 together to obtain three-ligand nanosheets with good colloidal stability. The key points for successful co-assembly are also revealed by comparing single- and three-ligand self-assembly processes, laying a solid foundation for co-assembly of even more ligands. The easy but powerful strategy for 2D materials with closely-packed and multiple tunable surface functional groups addresses the surface engineering problem for 2D materials and paves the way for their wider applications in sensing and biomaterials.  相似文献   

17.
Supramolecular polymer co-assembly is a useful approach to modulate peptide nanostructures. However, the co-assembly scenario where one of the peptide building blocks simultaneously forms a hydrogel is yet to be studied. Herein, we investigate the co-assembly formation of diphenylalanine (FF), and Fmoc-diphenylalanine (FmocFF) within the 3D network of FmocFF hydrogel. The overlapping peptide sequence between the two building blocks leads to their co-assembly within the gel state modulating the nature of the FF crystals. We observe the formation of branched microcrystalline aggregates with an atypical curvature, in contrast to the FF assemblies obtained from aqueous solution. Optical microscopy reveal the sigmoidal kinetic growth profile of these aggregates. Microfluidics and ToF-SIMS experiments exhibit the presence of co-assembled structures of FF and FmocFF in the crystalline aggregates. Molecular dynamics simulation was used to decipher the mechanism of co-assembly formation.  相似文献   

18.
天然骨形成是一个多模板协同共组装的过程。与单模板自组装相比,双模板介导合成的类骨磷灰石具有与天然骨更加相近的多级结构,在生物矿化研究领域具有更重要的研究意义。本文介绍了双模板介导合成类骨磷灰石的研究进展,探讨了双模板的选择、设计及模板分子间的相互作用,阐述了模板对磷灰石晶体成核的调控机制。通过双模板介导自组装生成的磷灰石材料,以其特有的仿生多级结构和骨诱导效果,在骨缺损修复、齿科修复、表面涂层及药物载体等领域具有广阔的应用前景。  相似文献   

19.
20.
The binding of single-stranded DNAs and a neutral DNA analogue (peptide nucleic acid, PNA) to single-walled carbon nanotubes in solution phase has been probed by absorbance spectroscopy and linear dichroism. The nanotubes are solubilised by aqueous sodium dodecyl sulfate, in which the nucleic acids also dissolve. The linear dichroism (LD) of the nanotubes, when subtracted from that due to the nanotubes/nucleic acid samples, gives the LD of the bound nucleic acid. The binding of the single-stranded DNA to the single-walled nanotubes is quite different from that previously observed for double-stranded DNA. It is likely that the nucleic acid bases lie flat on the nanotube surface with the backbone wrapping round the nanotube at an oblique angle in the region of 45 degrees . The net effect is like beads on a string. The base orientation with the single-stranded PNA is inverted with respect to that of the single-stranded DNA, as shown by their oppositely signed LD signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号