首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

2.
A study of surface and interface properties of reconstructed Au-SiC(0 0 0 1) surfaces is reported. Two reconstructions were prepared on SiC(0 0 0 1), a √3 × √3R30° and a Si-rich 3 × 3, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 3 × 3 surface the existence of three stable reconstructions 2√3 × 2√3R30°, 3 × 3 and 5 × 5 are revealed after deposition of Au layers, 4-8 Å thick, and annealing at progressively higher temperatures between 500 and 950 °C. For the 2√3 surface two surface shifted Si 2p components are revealed and the Au 4f spectra clearly indicate silicide formation. The variation in relative intensity for the different core level components with photon energy suggests formation of an ordered silicide layer with some excess Si on top. Similar core level spectra and variations in relative intensity with photon energy are obtained for the 3 × 3 and 5 × 5 phases but the amount of excess Si on top is observed to be smaller and an additional weak Si 2p component becomes discernable.For the √3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 3 × 3 surface and only one stable reconstruction, a 3 × 3 phase, is observed at similar annealing temperatures.  相似文献   

3.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

4.
The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 × 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 × √3) R30°, (2 × 2) and a one-dimensional incommensurate (√3 × √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry.  相似文献   

5.
The interaction of sulfur with gold surfaces has attracted considerable interest due to numerous technological applications such as the formation of self-assembled monolayers and as a chemical sensor. Here, we report on the interaction of sulfur with Au(1 1 1) at two different temperatures (300 K and 420 K) studied by real-time scanning tunnelling microscopy, low energy electron diffraction and Auger electron spectroscopy. In the low coverage regime (<0.1 ML), S adsorption lifts the herringbone reconstruction of the clean Au(1 1 1) surface indicating a lateral expansion of the surface layer. An ordered (√3 × √3)R30° sulfur adlayer develops as the coverage reaches ∼0.3 ML. At higher S coverages (>0.3 ML) gold surface atoms are removed from regular terrace sites and incorporated into a growing gold sulfide phase. At 300 K this process leads to the formation of a rough pit and mound surface morphology. This gold sulfide exhibits short-range order and an incommensurate, long-range ordered AuS phase develops upon annealing at 450-525 K. In contrast, formation of an ordered AuS phase via rapid step-retraction rather than etch pit formation is observed during S-interaction with Au(1 1 1) surfaces at 420 K. Our results shed new light on the S-Au(1 1 1) interaction.  相似文献   

6.
J. Wang  Y. Liu  M.H. Xie 《Surface science》2006,600(14):169-174
A new reconstruction of √3 × √3-R30° has been observed on a GaN film grown on a 6H-SiC (0 0 0 1)-√3 × √3 surface using RHEED and LEED experimental techniques. The experimental LEED PF shows that the GaN film is Ga-terminated hexagonal. The surface is a mixture of two structures with a single bilayer height difference between them. One is a √3 × √3-R30° reconstruction with Ga-adatoms occupying the T4 sites. Another is a Ga-terminated 1 × 1 with no extra Ga on top. The area ratio of the √3 × √3 part to the 1 × 1 part is slightly larger than 1. The first principle total energy calculations and Tensor-LEED I-V curves simulations further confirm this structure model.  相似文献   

7.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

8.
The electronic properties of thin metallic films of Pb, Ag, Au and In atoms deposited at 105 K on well defined metallic surface, i.e. Si(1 1 1)-(6 × 6)Au surface with 10 ML of annealed Pb, were investigated using four-point probe method in UHV condition. The structure of the substrate and deposited metals were monitored by the RHEED system. The electrical conductance, measured during the deposition of In and Pb atoms, shows the local minimum for the coverage equals about 0.3 ML whereas for Au and Ag atoms the conductance decreases during the first monolayer growth. For Au atoms the local maximum in the conductance was observed for the coverage about 0.55 ML, which can be connected with localized states. To describe theoretically the conductance behavior the tight-binding Hamiltonian and equation of motion for the Green’s function were used and good qualitative agreement was obtained.  相似文献   

9.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

10.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

11.
V. Joco  P. Segovia  J. Fujii 《Surface science》2006,600(18):3851-3855
The c(5√2 × √2)R45°-Pb/Cu(1 0 0) surface phase is investigated by means of angle resolved ultraviolet photoemission and low energy electron diffraction in the temperature range between 300 and 550 K. We identify and characterize a temperature-induced surface phase transition at 440 K from the room temperature c(5√2 × √2) R45° phase to a (√2 × √2)R45° structure with split superstructure spots. The phase transition is fully reversible and takes place before the two-dimensional melting of the structure at 520 K. The electronic structure of the split (√2 × √2)R45° phase is characterized by a metallic free-electron like surface band. This surface band is backfolded with c(5√2 × √2)R45° periodicity phase at room temperature, giving rise to a surface band gap at the Fermi energy. We propose that a gain in electronic energy explains in part the stability of the c(5√2 × √2)R45° phase.  相似文献   

12.
An initial oxidation dynamics of 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface has been studied using high resolution X-ray photoelectron spectroscopy and supersonic molecular beams. Clean 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface was exposed to oxygen molecules with translational energy of 0.5 eV at 300 K. In the first step of initial oxidation, oxygen molecules are immediately dissociated and atomic oxygens are inserted into Si-Si back bonds to form stable oxide species. At this stage, drastic increase in growth rate of stable oxide species by heating molecular beam source to 1400 K was found. We concluded that this increase in growth rate of stable oxide is mainly caused by molecular vibrational excitation. It suggests that the dissociation barrier is located in the exit channel on potential energy hypersurface. A metastable molecular oxygen species was found to be adsorbed on a Si-adatom that has two oxygen atoms inserted into the back bonds. The adsorption of the metastable species is neither enhanced nor suppressed by molecular vibrational excitation.  相似文献   

13.
R. Negishi 《Surface science》2006,600(5):1125-1128
The Au silicide islands have been fabricated by additional deposition of Au on the prepared surface at 270 °C where the Si islands of magic sizes were formed on the Si(1 1 1)-(7 × 7) dimer-adatom-stacking fault substrate. The surface structure on the Au silicide islands shows the Au/Si(1 1 1)-√3 × √3 reconstructed structure although the substrate remains 7 × 7 DAS structure. The size of the Au silicide islands depends on the size distribution of the preformed Si islands, because the initial size and shape of the Si islands play important roles in the formation of the Au silicide island. We have achieved the fabrication of the Au silicide islands of about the same size (∼5 nm) and the same shape by controlling the initial Si growth and the additional Au growth conditions.  相似文献   

14.
The properties of the clean and unreconstructed 6H-SiC(0 0 0 1) and 6H-SiC surfaces were investigated by means of angle-resolved photoelectron spectroscopy (ARPES). These highly metastable surfaces were prepared by exposing hydrogen terminated surfaces to a high flux of synchrotron radiation. On both surfaces we find a band of surface states with 1 × 1 periodicity assigned to unsaturated Si and C dangling bonds located at 0.8 eV and 0.2 eV above the valence band maximum, respectively. Both states are located below the Fermi level. The dispersion of the surface bands amounts to 0.2 eV for the Si derived band and 0.7 eV for C derived band. It is suggested that the electronic properties of these surfaces are governed by strong correlation effects (Mott-Hubbard metal insulator transition). The results for the (0 0 0 1) surface are directly compared to Si-rich (√3 × √3)R30° reconstructed surface. Distinct differences in electronic structure of the (√3 × √3)R30° and 1 × 1 surfaces are observed.  相似文献   

15.
D. Kaminski 《Surface science》2005,575(3):233-246
Using surface X-ray diffraction, we have determined the structure of three different sub-monolayer phases of Bi on Cu(1 1 1). In contrast to an early report, we find that at a coverage of 1/3 monolayer a substitutional surface alloy is formed with a (√3 × √3)R30° unit cell. For increasing coverage, de-alloying occurs, leading to an overlayer structure at a coverage of 0.5 ML in which the Bi atoms form zigzag chains. The surface contains three domains of this phase. Finally, at a slightly higher coverage of 0.53 ML, the unit cell is compressed in one direction, leading to a uniaxial-incommensurate phase with three rotational domains.The structure determination includes relaxations in the topmost layers and therefore allows a detailed comparison of the most important bond distances. This shows that an increased charge density of the Cu(1 1 1) surface is the main driving force for the different phases.  相似文献   

16.
We describe the electrochemical preparation of an ultrathin copper sulfide film on Au(1 1 1) and its structural characterization by in situ STM. The first step, underpotential deposition of a Cu submonolayer from CuSO4/H2SO4 solution, is followed by two electrolyte exchanges for (i) Cu-free (blank) H2SO4 solution and (ii) NaOH/Na2S solution. The well-known (√3 × √3)R30° structure of the upd Cu layer is stable in the blank electrolyte for at least 2 h. After exposure to bisulfide, the Cu layer contracts and forms two-dimensional islands of two distinct ordered surface phases, i.e. a rectangular and, at higher potentials, a hexagonal phase, with Cu-free Au(1 1 1) regions between them, the latter exhibiting the characteristic (√3 × √3)R30°-S adlayer structure. Potential changes lead to a complex phase behaviour including HS ? Sx oxidation/reduction and, at strongly anodic potentials, dissolution of the Cu adlayer.  相似文献   

17.
With the aim of comparing initial Ge adsorption and desorption modes on different surface terminations of 4H-SiC(0 0 0 1) faces, 3 × 3, √3×√3R30° (R3) and 6√3×6√3R30° (6R3) reconstructions, of decreasing Si surface richness, have been prepared by standard surface preparation procedures. They are controlled by reflection high energy electron diffraction (RHEED), low energy electron diffraction and photoemission. One monolayer of Ge has been deposited similarly at room temperature on each of these three surfaces, followed by the same set of isochronal heatings at increasing temperatures up to complete Ge desorption. At each step of heating, the structural and chemical status of the Ge ad-layer has been probed. Marked differences between the Si- (3 × 3 and R3) and C-rich (6R3) terminations have been obtained. Ge wetting layers are only obtained up to 400 °C on 3 × 3 and R3 surfaces in the form of a 4 × 4 reconstruction. The wetting is more complete on the R3 surface, whose atomic structure is the closest to an ideally Si-terminated 1 × 1 SiC surface. At higher temperatures, the wetting layer stage transiets in Ge polycrystallites followed by the unexpected appearance on the 3 × 3 surface of a more ordered Si island structure. It denotes a Si clustering of the initial Si 3 × 3 excess, induced by the presence of Ge. A phase separation mechanism between Si and Ge prevails therefore over alloying by Ge supply onto a such Si-terminated 3 × 3 surface. Conversely, no wetting is obtained on the 6R3 surface and island formation of exclusively pure Ge takes place already at low temperature. These islands exhibit a better epitaxial relationship characterized by Ge(1 1 1)//SiC(0 0 0 1) and Ge〈1 1 −2〉//SiC〈1 −1 0 0〉, ascertained by a clear RHEED spot pattern. The absence of any Ge-C bond signature in the X-ray photoelectron spectroscopy Ge core lines indicates a dominant island nucleation on heterogeneous regions of the surface denuded by the 6R3 graphite pavings. Owing to the used annealing cycles, the deposited Ge amount desorbs on the three surfaces at differentiated temperatures ranging from 950 to 1200 °C. These differences probably reflect the varying morphologies formed at lower temperature on the different surfaces. Considering all these results, the use of imperfect 6R3 surfaces appears to be suited to promote the formation of pure and coherent Ge islands on SiC.  相似文献   

18.
Chemisorbed O and water react on Pd(1 1 1) at low temperatures to form a mixed OH/H2O layer with a (√3 × √3)R30° registry. Reaction requires at least two water molecules to each O before the (2 × 2)O islands are consumed, the most stable OH/water structure being a (OH + H2O) layer containing 0.67 ML of oxygen, formed by the reaction 3H2O + O → 2(H2O + OH). This structure is stabilised compared to pure water structures, decomposing at 190 K as OH recombines and water desorbs. The (√3 × √3)R30° − (OH + H2O) phase cannot be formed by O/H reaction and is distinct from the (√3 × √3)R30° structure formed by O/H coadsorption below 200 K. Mixed OH/water structures do not react with coadsorbed H below 190 K on Pd(1 1 1), preventing this phase catalyzing the low temperature H2/O2 reaction which only occurs at higher temperatures.  相似文献   

19.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

20.
We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 °C for 12 h + 400 °C for 1 h + 500 °C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1×1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1×1 structure. Upon annealing at 500-600 °C, the surface hydrogen was removed and a 3×3 reconstruction structure partially appeared, although a 1×1 structure was dominant. We summarize the structure differences among the samples under the same treatment and clarify the effect of crystal quality, such as dislocations, the concentration of hydrogen impurities, and the residual reactant molecules in GaN films, on the surface structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号