首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
2.
Adsorption isotherms are predicted for spherical adsorbates in cylindrical channels of MCM-41 mesoporous materials over a wide range of temperatures by using the “fragment method”. This prediction shows that an equilibrium capillary condensation is impossible for pores with diameters smaller than 2.5 nm. The adsorbate distribution in relatively large pore channels was described by the quasi-chemical approximation (QCA) that takes into account direct pair correlations between interacting molecules. In order to improve the lattice-gas model in the vicinity of the critical point, a calibration function that takes into account information from the fragment method, was introduced into the QCA equations. The influence of the size factor of pores on argon adsorption isotherms was demonstrated.  相似文献   

3.
This work reports a systematic study of ordered mesoporous silicas (OMSs) synthesized with and without hydrothermal treatment at 373 K for a series of surfactants of different alkyl chain length (from C10 to C18). For these samples nitrogen adsorption and small angle X-ray scattering (SAXS) data were measured to characterize their adsorption and surface properties. Namely, nitrogen adsorption isotherms were used to evaluate their specific surface area, pore volume and pore size distribution, whereas SAXS data provided information about their structural ordering. It is shown that while the room temperature synthesis afforded OMS samples with cubic MCM-48 structure, an additional 5-day hydrothermal treatment of these samples at 373 K caused their transformation to MCM-41 (two-dimensional hexagonal structure) and improved their pore uniformity, which was manifested by reducing the width of pore size distribution.  相似文献   

4.
CuO particles have decorated on the external surface of MCM-41 by in situ introducing cupric nitrate during the hydrothermal synthesis followed by the calcination. The textural and structural properties of CuO/MCM-41 are compared with those of pure MCM-41. The results show that CuO particles are about 40 nm in size and are not agglomerated. The addition of cupric nitrate to the synthesis gel leads to materials with somewhat reduced quality as evidenced from X-ray diffraction patterns and nitrogen adsorption measurements. CuO/MCM-41 is less ordered relative to pure MCM-41 and there are inter-aggregate pores resulting in a higher average pore diameter in the material. The formation of CuO particles on the external surface of MCM-41 and the possible reason for the less ordered structure of CuO/MCM-41 are also discussed in the present paper.  相似文献   

5.
A mesoporous silica material MCM-41 was synthesized under two different conditions, and ferrocene molecules were adsorbed into one-dimensional pores formed in MCM-41. The pore sizes were determined to be 0.9 and 2.8 nm for the MCM-41 synthesized under an acidic and a basic condition, respectively. The formation of paramagnetic ferricinium ions was observed after the adsorption into pores by ESR, magnetic susceptibility and 57Fe Mössbauer measurements. Spin densities attributable to ferricinium ions in the pores are estimated to be 0.74 and 0.065 in MCM-41 synthesized under an acidic and a basic condition, respectively. It was shown that the oxidation of ferrocene molecules to ferricinium ions in MCM-41 prepared in an acid solution is faster than that in base at ambient temperature and pressure.  相似文献   

6.
Experimental and grand canonical Monte Carlo simulation results for the separation of a CH2C12 (1.5 mol%)-N2 binary gas mixture in molecular sieve materials are presented. AlPO4-5 and MCM-41 molecular sieves have been used as the selective adsorbents because they consist of uniform arrays of uni-dimensional channels of micro and meso length scales, respectively. Adsorption isotherms were measured at 318 K and at pressures between 50 kPa and 130 kPa. Two MCM-41 materials have been used, one with a 33 A pore diameter and the other with a 42 Á pore diameter. For AlPO4-5 at 110kPa the total amount adsorbed from experiment was found to be independent of equilibration time at 0.0542, 0.0538 and 0.0547 mmol per g AlPO4-5 for 2, 24 and 48 hours, respectively. However, the selectivity for CH2C12 was found to increase with time from 1.29, to 4.59, to 10.74. For MCM-41 at 110kPa the selectivity for CH2C12 was found to be dependent on pore size. On increasing the pore size from 33 Å to 42 Á the selectivity for CH2C12 increased considerably. Grand canonical Monte Carlo simulations agreed qualitatively with the experimental results, showing a greater selectivity for CH2C12 than for N2. The simulations indicate that MCM-41 has a lower selectivity for CH2C12 than A1PO4-5, which contradicts the experimental results. Reasons for these discrepancies are presented and discussed.  相似文献   

7.
8.
9.
Thiol-functionalized MCM-41 mesoporous silicas were synthesized via evaporation-induced self-assembly. The mesoporous silicas obtained were characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The products were used as adsorbents to remove heavy metal ions from water. The mesoporous silicas (adsorbent A) with high pore diameter (centered at 5.27 nm) exhibited the largest adsorption capacity, with a BET surface area of 421.9 m2 g?1 and pore volume of 0.556 cmg?1. Different anions influenced the adsorption of Cu(II) in the order NO3 ? < OAc? < SO4 2? < CO3 2? < Cit? < Cl?. Analysis of adsorption isotherms showed that Cu2+, Pb2+, Ag+, and Cr3+ adsorption fit the Redlich–Peterson nonlinear model. The mesoporous silicas synthesized in the work can be used as adsorbents to remove heavy metal ions from water effectively. The removal rate was high, and the adsorbent could be regenerated by acid treatment without changing its properties.  相似文献   

10.
以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,以超声波为辅助手段于酸性介质中制备出了MCM-41介孔分子筛,采用XRD、TEM、FTIR等手段对样品进行了分析表征.结果表明,所合成样品具备MCM-41所特有的六方排列的一维孔道结构和较高的有序度,所合成的MCM-41平均粒径为11nm,孔径约为2.7nm.  相似文献   

11.
Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman spectra firmly demonstrated the stable form obtained after the MG incorporation into the nanometer MCM-41. Therefore, nanometer MCM-41 appears to have a good potential for its use as a support for dyes and the (nanometer MCM-41)-MG composite materials may give a wide optical application.  相似文献   

12.
Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N2 adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m2/g, 0.313552 and 0.603573 cm3/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.  相似文献   

13.
We present results of grand canonical Monte Carlo simulations of adsorption in cylindrical pores with rough surface modeled by lattice-site approach. Each site is characterized by two parameters: structural and energetic, which locally modify the structure and energy properties of the surface. There are three types of sites, randomly distributed over the wall: attractive, neutral and repulsive with respect to the smooth pore model. The results presented here show how this model affects the mechanism of adsorption and how it changes the forms of adsorption isotherm. We compare our numerical results with the experimental data of adsorption of a simple fluid (CH4, T = 77 K) in cylindrical silica pore of diameter d = 4 nm (MCM-41 material).  相似文献   

14.
Two most popular ordered mesoporous silicas, MCM-41 and SBA-15, exhibiting uniform mesopores of approximately cylindrical shapes, have been used as model adsorbents for verification, improvement and/or development of adsorption-based methods for characterization nanoporous materials. While the applicability of the classical methods for pore size analysis was widely examined by employing MCM-41 materials, the large-pore materials such as SBA-15 did not find adequate usage for this type of studies. The current work addresses the issue of applicability of classical methods such as Barrett-Joyner-Hallenda (BJH) and Broekhoff-de Boer (BdB) methods for pore size analysis of mesoporous silicas by using MCM-41 and SBA-15 materials as model adsorbents. In addition, the Kruk-Jaroniec-Sayari (KJS) method, which is based on the BJH algorithm and experimental relations for the pore width and statistical film thickness, is discussed too. While the MCM-41 materials cover the range of small mesopores (about 2-7 nm), the inclusion of SBA-15 materials allowed us to examine the range of the pore diameters up to about 12 nm. The high quality MCM-41 and SBA-15 samples are used to discuss the applicability and limitations of the aforementioned characterization methods and to propose some recommendations for pore size analysis of these materials.  相似文献   

15.
Grand Canonical Monte Carlo molecular simulations have been performed for argon and nitrogen adsorption on the basal surfaces of phyllosilicates without surface cations. The results have been compared with derivative isotherms analysis of experimental data. An optimization of the surface-Ar interaction has been performed by varying the oxygen atom LJ ?/kB parameter and the optimized value was used to perform the nitrogen adsorption simulations. The analysis of the argon adsorption simulation indicates that adsorption mechanisms are more complex than may be suggested by experimental results obtained by low-pressure adsorption. The structure of the adsorbed film has a marked dynamic behaviour and the monolayer capacity strongly depends on the equilibrium relative pressure. For nitrogen adsorption, while high pressure behaviour is simulated adequately, some deviation is observed in low-pressure region of the isotherms suggesting that additional simulation and perhaps the use of a more sophisticated potential to model the nitrogen molecule can be necessary to understand fully the behavior of this gas on clay minerals.  相似文献   

16.
Phase behaviors of argon in several types of cylindrical and slit pores are examined by grand-canonical Monte Carlo simulations. Condensation processes in single- and multi-walled carbon nanotubes along with those in hard-wall tubes are compared. Effects of the pore size on pressure-tensor components, the fluid-wall surface tension, and the adsorption are also compared for the different fluid-pore interactions. The chemical potential at which the fluid begins to condense in the single-walled nanotube is greater than that in the multi-walled nanotube by an amount nearly equal to the difference in the potential-well depth of the fluid-pore interaction, and the adsorption isotherms overlap each other almost completely for narrow pores and partially for wider pores. Similar analyses are performed for slit pores of two different hydrocarbon models.  相似文献   

17.
Ordered mesoporous carbon, OMC, was synthesized using ordered mesoporous silica MCM-48 as hard template, the structural order and textural properties of the synthesized materials were studied by XRD, SEM, and nitrogen adsorption-desorption analysis. Adsorption of naphthalene over various porous adsorbents such as OMC, MCM-48, and commercial activated carbon was studied from solutions with different concentration at ambient temperature (25 ± 2 °C) and pH 7. The adsorption isotherms of naphthalene were in agreement with a Langmuir model, moreover, the uptake capacity of naphthalene followed the order: OMC > commercial activated carbon > mesoporous silica (MCM-48).  相似文献   

18.
A series of highly ordered mesoporous materials (CF-SBA-15) with heat-resistant magnetism have been successfully prepared from impregnation of cobalt salt, iron salt, and citric acid with as-synthesized SBA-15. XRD and N2 isotherms indicate that these materials have highly ordered hexagonal mesoporous symmetry and open pore systems. The measurement of magnetic property shows that these materials are ferromagnetic even if calcined at 550 °C for 10 h in air, indicating their good heat-resistant magnetism. These results would be very important for recycle and regeneration of adsorbents and catalysts in practical applications. Moreover, this method may be useful for other mesoporous materials with thermally stable magnetism from a combination of other mesoporous materials such as MCM-41 with magnetic nanoparticles of MnFe2O4 and NiFe2O4.  相似文献   

19.
Naringinase was bound to mesoporous silica MCM-41 via adsorption with glutaraldehyde and used to debitter white grapefruit. Km value of the immobilized naringinase was lower than that of free naringinase. The immobilized catalysts showed excellent thermal stability and storage stability and could be recycled 6 times retained about 44.57% activities. The unaltered structural order of the prepared catalyst was characterized with reference to bulky and surface properties by infrared spectroscopy (FT-IR), elemental analysis and nitrogen adsorption-desorption isotherms analysis.  相似文献   

20.
Two samples of oxidized activated carbon of wood origin were used as adsorbents of water, methanol, and diethyl ether. Structural and chemical characteristics of the samples' surfaces were obtained using adsorption of nitrogen and Boehm titration. The adsorption isotherms of water and methanol were measured using a volumetric apparatus whereas the adsorption of diethyl ether was studied by means of inverse gas chromatography at finite concentration. Then the isotherms at three different temperatures were used to calculate the isosteric heats of adsorption. The results showed that the strength of interaction depends on the porosity of the sample and its surface chemistry. The effect of surface chemistry and the presence of oxygenated groups are predominant in the case of water and the least important in the case of diethyl ether. This is the result of the chemical nature of the molecules, their sizes, and the relative strengths of the dispersive interactions in small pores in comparison with hydrogen bonding to surface functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号