首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The propagation of linear and nonlinear dust ion acoustic waves (DIAWs) are studied in a collisionless magnetized plasma which consists of warm ions having anisotropic thermal pressure, nonthermal (energetic) electrons and static dust particles of positive and negative charge polarity. The anisotropic ion pressure is defined using double adiabatic Chew‐Golberger‐Low (CGL) theory. In the linear regime, the propagation properties of the two possible modes are investigated via ion pressure anisotropy, dust particle polarity and nonthermality of electrons. Using reductive method Zakharov‐Kuznetsov (ZK) equation is derived for the propagation of two dimensional electrostatic dust ion acoustic solitary waves in dusty plasmas. It is found that both compressive and rarefactive solitons are formed in presence of nonthermal electrons using Cairn's distribution [R.A. Cairns, A.A. Mamun, R. Bingham, R.O. Dendy, R. Bostrom, C.M.C. Nairn and P.K. Shukla, Geophys.Res. Lett. 22 , 2709 (1995)] in the system. The ion pressure anisotropy, nonthermality of electrons and charge polarity of the dust particles have significant effects on the amplitude and width of the dust ion acoustic solitary waves in such anisotropic nonthermal magnetized dusty plasmas. The numerical results are also presented for illustration. Our finding is applicable to space dusty plasma regimes having anisotropic ion pressure and nonthermal electrons. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.  相似文献   

3.
Linear and nonlinear phenomena are investigated in toroidal ion temperature gradient (TITG)-driven pure drift mode. The model includes inhomogeneity in background magnetic field, ion temperature, and density. Finite Larmor radius effect is incorporated to understand the effect of low-frequency wave on ion dynamics. Electrons are assumed to follow nonthermal distribution, that is, kappa and Cairns distributions. Dispersion relation is obtained to analyse the linear behaviour of the TITG mode in the presence of non-Maxwellian electron distribution. In the nonlinear regime, exact solutions (soliton and shocks) are obtained (in dispersive and dissipative medium respectively) by using functional variable method to solve the nonlinear partial differential equation obtained for the system under consideration. Graphical illustrations are used to exhibit the characteristics of linear and nonlinear structures and their dependence on different physical parameters. It is observed that for TITG-driven pure drift mode, rarefactive solitons are formed for both thermal and nonthermal electron distributions. It is also observed that variation of electrons from standard thermal distribution affects the propagation characteristics of linear and nonlinear structures in TITG-driven modes. Results of our investigations will be helpful to understand the low-frequency waves in inhomogeneous plasmas in the presence of nonthermal electron distributions which are frequently observed by satellite missions and are also observed in laboratory plasmas.  相似文献   

4.
P K Karmakar 《Pramana》2007,68(4):631-648
Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes. As usual, the modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics associated with parent ion inertia is excitable for both nanoscale-and micronscale-sized dust grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic (DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable through the active role of weak but finite parent ion inertia. It is interestingly conjectured that the same excitation physics, as in the case of normal plasma sound mode, operates through the active inertial role of plasma thermal species. Details of the nonlinear acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are presented.   相似文献   

5.
Compressive and Rarefactive Waves in Dust Plasma with Non-thermal Ions   总被引:1,自引:0,他引:1  
The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. They can be determined by plasma parameters including the temperatures of dust fluid, ions and electrons, as well as the non-thermal parameter of ions, and the number densities of the dust particles, the ions and the electrons, etc.  相似文献   

6.
The nonlinear propagation of dust acoustic waves is investigated in four-component plasmas consisting of positively charged dust grains, trapped ions, nonthermal electrons, and photoelectron due to ultraviolet irradiation.We use generalized viscoelastic hydrodynamic model for strongly coupled dust grain. In the weak nonlinearity limit, a modified Kadomstev–Petviashvili(KP) equation and a modified KP-Burger equation, which have a damping term coming from nonadiabatic charge variation, have been derived in the kinetic regime and hydrodynamic regime, respectively. With the increasing of UV photon flux, the hydrodynamic regime changes to kinetic regime. The approximate analytical line soliton and shock solutions are investigated in the kinetic regime and hydrodynamic regime, respectively.  相似文献   

7.
8.
王德真  吴洪涛 《中国物理》2002,11(8):799-803
The radial distributions of ions,electrons and dust particles in the positive colum of glow discharges are investigated in a tripled-pole diffusion model.The dust particles are mainly trapped in the region around the column axis where the electrostatic potential is the highest.The presence of the dust particles results in the ion density increasing and the electron density decreasiung in the dust-trapped region.The dust-trapped region is wider for a higher dust temperature or a smaller particulate redius.The ions and electrons in the dust-free region away from the column axis are in ambipolar diffusion.  相似文献   

9.
The nonlinear propagation of the dust-acoustic (DA) waves in a strongly coupled dusty plasma containing Maxwellian electrons, nonthermal ions, and positively charged dust is theoritically investigated by a Burgers equation. The effects of the polarization force (which arises due to the interaction between electrons and highly positively charged dust grains) and nonthermal ions are studied. DA shock waves are found to exist with positive potential only. It represents that the strong correlation among the charged dust grains is a source of dissipation, and is responsible for the formation of DA shock waves. The effects of polarization force and nonthermal ions significantly modified the basic features of DA shock waves in strongly coupled dusty plasma.  相似文献   

10.
The Korteweg-de Vries-Burgers (KdV-Burgers) equation and modified Korteweg-de Vries-Burgers equation are derived in strongly coupled dusty plasmas containing nonthermal ions and Boltzmann distributed electrons. It is found that solitary waves and shock waves can be produced in this medium. The effects of important parameters such as ion nonthermal parameter, temperature, density and velocity on the properties of shock waves and solitary waves are discussed.  相似文献   

11.
Electrostatic solitons in an unmagnetized pair-ion plasma comprising adiabatic fluid positive and negative ions and non-isothermal electrons are investigated using both arbitrary and small amplitude techniques. An energy integral equation involving the Sagdeev potential is derived, and the basic properties of large amplitude solitary structures are investigated. Various features of solitons differ in different existence domains. The effects of ion adiabaticity, particle concentration, and resonant electrons on the profiles of Sagdeev potential and corresponding solitary waves are investigated. The generalized Korteweg-de Vries equation with mixed-nonlinearity is derived by expanding the Sagdeev potential. Asymptotic solutions for different orders of nonlinearity are discussed for solitary waves. The present work is applicable to understanding the wave phenomena and associated nonlinear electrostatic perturbations in pair/bi-ion plasmas which may occur in space and laboratory plasmas.  相似文献   

12.
The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dust grains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.  相似文献   

13.
The pseudopotential technique is applied to a multicomponent plasma consisting of nonthermal electrons and warm positive and negative ions with drift motion with a view to studying ion-acoustic double layers. Conditions for the existence of such layers are obtained, two critical concentrations of negative ions being identified which control the formation and nature of the ion-acoustic double layers. The effects of nonthermal electrons, negative-ion concentration, and negative-ion temperature on the double layer formation and structure are also investigated. The nonthermal electrons and the negative ions are shown to contribute significantly to the excitation and structure of the double layers. The importance of the results in the context of magnetospheric and auroral plasmas is discussed.  相似文献   

14.
It is shown that a pre-existing dust ripple in a dusty plasma may excite tunable electromagnetic radiation. For our purposes, we use the Maxwell equation and the electron equation of motion to derive a Mathieu equation in the presence of a spatially oscillating dust ripple. The Mathieu equation admits instability of an electromagnetic wave. Criteria under which instability occurs are presented. Explicit expression for the electromagnetic radiation frequency and the growth rate are obtained. The possible relevance of our investigation to nonthermal electromagnetic radiation sources from laboratory and cosmic dusty plasmas is considered.  相似文献   

15.
In the present article, we studied the effect of nonthermal electrons on the formation and existence of double-layer structures in a three-species plasma consisting of positive ions, nonthermal electrons, and immobile negative dust-charged grains. Employing the reductive perturbations, a modified Korteweg–de Vries (mKdV) type equation is derived for the dust-ion-acoustic waves (DIAWs) bearing nonthermality. We found that both positive and negative polarity shock structures (double layer) can exist such that it switches polarity while changing the dust charge concentrations. However, strong nonthemality favours only rarefactive structures irrespective of the ion temperature. It is also found that increasing the nonthermal electron in the system the width of the double layer is increased; furthermore, the shock structure forms with small dust charge concentration. For small ionic temperature, increasing the nonthermal electrons in the system makes the double layer potential to increase; however, for σ = 1 reverse phenomena occurs. Our results are relevant to the shock observations in Q machine experiments and in the ionospheric regime of the earth.  相似文献   

16.
We present general expressions for the components of the dielectric tensor of magnetized dusty plasmas, valid for arbitrary direction of propagation and for situations in which populations of dust particles of different sizes are present in the plasma. These expressions are derived using a kinetic approach which takes into account the variation of the charge of the dust particles due to inelastic collisions with electrons and ions, and features the components of the dielectric tensor in terms of a finite and an infinite series, containing all effects of harmonics and Larmor radius, and is valid for the whole range of frequencies above the plasma frequency of the dust particles, which are assumed to be motionless. The integrals in velocity space which appear in the dielectric tensor are solved assuming that the electron and ion populations are described by anisotropic non-thermal distributions characterized by parameters κ and κ , featuring the Maxwellian as a limiting case. These integrals can be written in terms of generalized dispersion functions, which can be expressed in terms of hypergeometric functions. The formulation therefore becomes specially suitable for numerical analysis.  相似文献   

17.
The physical and optical properties of plasmas are depended on dynamics of species in the discharge volume. Then, the presence of an electron beam, as a separate component, in a dusty plasma can modify the plasma structures through altering the discharge parameters. In this report, the linear propagation of acoustic modes in a collisionless dusty plasma contains electrons, ions and charged dust grains is investigated in the presence of an electron beam. Our analysis indicates that the electron beam can modify the dispersion relations of dust acoustic modes which resulted different data transportation in dusty plasmas. The obtained results are also examined for negative and positive charged dust grains with different number densities. The charge of dust grains represents an important role in the dynamics of the low frequency waves. Additionally, our findings reveal that the propagation of acoustic waves in dusty plasmas can be controlled by adjusting the electron number density of the beam and the cathode potential. Lastly, we obtian the destabilizing effects, originated from dust charge fluctuation, by reconsidering the dispersion relations of both dust acoustic modes.  相似文献   

18.
《Physics letters. A》1997,235(3):241-247
Dusty plasmas, besides electrons and protons, contain very massive charged dust grains with very high charges. By means of Poincaré map analysis, we show that even a small fraction of these charged dust grains can eliminate the chaos in Alfvénic systems which are chaotic in the absence of dust particles.  相似文献   

19.
Ordering of dust grains suspended in glow discharge plasmas into quasi-steady liquid-or crystallike structures in an external field is considered. The self-consistent electric field generated by free electrons, ions, and dust grains is found. An estimate is obtained for the confining potential required to hold dust grains in the direction perpendicular to the discharge axis. It is shown that the potential energy of interaction between ordered dust particles has the form characteristic of ionic crystals. Critical parameters are estimated for a liquidlike dust structure. The correlation function calculated for a dusty plasma by using this approach is compared with a measured one.  相似文献   

20.
The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号