首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.  相似文献   

2.
The effect of nonthermal distributions of electrons on ion-temperature-gradient (ITG)-driven drift modes in the presence of tiny dust particles for bi-ion magneto plasmas is investigated. The dynamics of bi-ions and dust particles is considered for the study of low-frequency (less than the gyrofrequencies of dust and ions) ITG mode. A new dispersion relation is derived and analyzed numerically as well as analytically. Three different distributions for nonthermal electrons (Kappa, q, and Cairns distribution) are used. It is found that the presence of nonthermal electrons in bi-ion dusty magnetoplasma reduces the growth rate of the ITG instability. These results should be useful for laboratory and space plasmas where nonthermal electrons and dust is always present.  相似文献   

3.
When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow.  相似文献   

4.
Hamid Reza Pakzad 《Pramana》2010,74(4):605-614
In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev-Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained. The effects of variable dust charge on the energy of soliton and the angular frequency of linear wave are also discussed.  相似文献   

5.
We have investigated the diamagnetic flow in a non-uniform partially ionized plasma with non-Maxwellian electron population to explain the dynamics of ion velocity shear-induced low-frequency drift mode and associated instabilities. The dispersion relations are found, and instability threshold conditions are pointed out along with ion-parallel momentum transport due to drift motion with relative phase shift of fluctuating quantities in a non-conservative system. The real frequencies and instability growth rates are studied numerically and illustrated for typical space and laboratory plasmas. This study should be useful in understanding some aspects of low-frequency time-delayed perturbations with sheared flow leading to drift instabilities and cross-field parallel ion momentum transport in nonuniform magnetoplasmas containing a non-Maxwellian electron population.  相似文献   

6.
The propagation of linear and nonlinear dust ion acoustic waves (DIAWs) are studied in a collisionless magnetized plasma which consists of warm ions having anisotropic thermal pressure, nonthermal (energetic) electrons and static dust particles of positive and negative charge polarity. The anisotropic ion pressure is defined using double adiabatic Chew‐Golberger‐Low (CGL) theory. In the linear regime, the propagation properties of the two possible modes are investigated via ion pressure anisotropy, dust particle polarity and nonthermality of electrons. Using reductive method Zakharov‐Kuznetsov (ZK) equation is derived for the propagation of two dimensional electrostatic dust ion acoustic solitary waves in dusty plasmas. It is found that both compressive and rarefactive solitons are formed in presence of nonthermal electrons using Cairn's distribution [R.A. Cairns, A.A. Mamun, R. Bingham, R.O. Dendy, R. Bostrom, C.M.C. Nairn and P.K. Shukla, Geophys.Res. Lett. 22 , 2709 (1995)] in the system. The ion pressure anisotropy, nonthermality of electrons and charge polarity of the dust particles have significant effects on the amplitude and width of the dust ion acoustic solitary waves in such anisotropic nonthermal magnetized dusty plasmas. The numerical results are also presented for illustration. Our finding is applicable to space dusty plasma regimes having anisotropic ion pressure and nonthermal electrons. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Coherent wave-wave coupling can produce radiation with a high efficiency. Recently, there has been a great deal of interest in the study of electro-magnetic wave generation in magnetized plasmas. We have investigated theoretically the effect of finite ion temperature on the parametric instability of an electro-static upperhybrid pump into an X-mode nonthermal radiation and low frequency ion waves in a two electron temperature plasma. The latter may include the lower-hybrid, the electron-acoustic and the ion-cyclotron waves. The loss cone distribution existing permanently at low altitudes acts as a free energy source generating the upper-hybrid waves. The upper-hybrid waves can also be present because of a linear instability produced by runaway electrons. Nonlinear dispersion relation and the growth rates are derived for each case using the hydrodynamical model. We find extra numerical factor arising due to the ions of finite temperature in the growth rate expression. This study may be useful in magnetosphere, auroral ionosphere, solar wind, solar radio bursts, and laboratory plasmas where ion has finite temperature and electrons have two distinct energy distributions.  相似文献   

8.
Low-frequency electrostatic drift waves are studied in an inhomogeneous dust magnetoplasma containing dust with components of opposite polarity. The drift waves are driven by the magnetic-field-aligned (parallel) sheared flows in the presence of electrons and ions. Due to sheared flow in the linear regime, the electrostatic dust drift waves become unstable. The conditions of mode instability, with the effects of dust streaming and opposite polarity, are studied. These are excited modes which gain large amplitudes and exhibit interactions among themselves. The interaction is governed by the Hasegawa-Mima (HM) nonlinear equation with vector nonlinearity. The stationary solutions of the HM equation in the form of a vortex chain and a dipolar vortex, including effects of dust polarity and electron (ion) temperatures, are studied. The relevance of the present work to space and laboratory four component dusty plasmas is noted.  相似文献   

9.
In this paper, the effect of generalized (r, q) distributed electrons on the linear and nonlinear coupling of drift and ion acoustic waves in a nonuniform plasma containing Hydrogen and Oxygen ions is investigated. In the linear regime, it is observed that increasing the percentage of flat-topped (i.e. r > 0) electrons enhances the frequency of the coupled drift-ion acoustic waves, whereas the increasing values of the spectral index q mitigates it. In the nonlinear regime, one- and two-dimensional Korteweg de Vries-like and Kadomtsev-Petviashvili-like equations are derived and their solutions are plotted for different ratios of ion number densities and for different values of double spectral indices r and q of the generalized distribution of electrons. It is found that only rarefactive structures exist for two-dimensional solitons, however, both rarefactive and compressive structures are observed for the one-dimensional case. The limiting cases of kappa and Maxwellian distributions are also discussed and their comparison with the generalized (r, q) distribution is thoroughly investigated. Spatial scales for the formation of rarefactive and compressive solitary structures are also discussed with reference to the changing electron distribution functions. The possible applications of the present study are also spelled out with special reference to space plasmas.  相似文献   

10.
《Physics letters. A》2005,336(1):53-60
As the plasma coupling grows, the electron density in the vicinity of the central ion increases appreciably, and the atomic reaction rates evaluated with the free Maxwell distribution for weakly coupled plasmas require modifications. The Maxwell–Boltzmann distribution, expressed in terms of the screened ionic potential, provides a simple way to correct for the density change. Several adjustments of the distribution are considered, including the nonlinear shielding, the quantum effect, the charge neutrality condition, and electron–electron correlation. The nonlinear coupling is shown to add to the linearly shielded potential a new component with much stronger shielding and generally reduces the strength of the linear potential. A simple model for the density enhancement is then constructed for moderately coupled plasmas, which may be applied to approximately correct the existing rates which were obtained in the weak coupling limit.  相似文献   

11.
12.
In this Letter, we discuss the electron acoustic (EA) waves in plasmas, which consist of nonthermal hot electrons featuring the Tsallis distribution, and obtain the corresponding governing equation, that is, a nonlinear Schrödinger (NLS) equation. By means of Modulation Instability (MI) analysis of the EA waves, it is found that both electron acoustic solitary wave and rogue wave can exist in such plasmas. Basing on the Darboux transformation method, we derive the analytical expressions of nonlinear solutions of NLS equations, such as single/double solitary wave solutions and single/double rogue wave solutions. The existential regions and amplitude of solitary wave solutions and the rogue wave solutions are influenced by the nonextensive parameter q and nonthermal parameter α. Moreover, the interaction of solitary wave and how to postpone the excitation of rogue wave are also studied.  相似文献   

13.
Fully ionized L-mode tokamak plasmas in the fully collisional (Pfirsch-Schlüter) and in the low-collisional (banana) nonlinear transport regimes are analyzed. We derive the expressions for particles and heat losses together with the steady-state particle distribution functions in the several collisional transport regimes. The validity of the nonlinear closure equations, previously derived, has been indirectly tested by checking that the obtained particle distribution functions are indeed solutions of the nonlinear, steady-state, Vlasov-Landau gyro-kinetic equations. A quite encouraging result is the fact that, for L-mode tokamak plasmas a dissymmetry appears between the ion and electron transport coefficients: the latter submits to a nonlinear correction, which makes the radial electron coefficients much larger than the former. In particular we show that when the L-mode JET plasma is out of the linear region, the Pfirsch-Schlüter electron transport coefficients are corrected by an amplification factor, which may reach values of order 102. Such a correction is absent for ions. On the contrary, in the banana regime, the ion transport coefficients are increased by a factor 2 and the nonlinear corrections for electrons are negligible. These results are in line with experiments.  相似文献   

14.
We present nonlinear properties of the low-frequency nonlinear electrostatic waves in a nonuniform bounded magneto-plasma with the equilibrium density and parallel ion velocity gradients along the radial direction. The existence of electrostatic global vortices in a cylindrical magnetoplasma is established. The present results should help to understand the properties of coherent vortical structures in the presence of a magnetic field-aligned ion flow with a radial ion velocity gradient in laboratory magnetoplasmas that are bounded and nonuniform.  相似文献   

15.
The nonlinear excitation of low-frequency oscillations in the case when an ion flux is radially injected into the drift chamber where a tubular relativistic electron beam propagates is studied. A mechanism behind low-frequency ion oscillations is discussed.  相似文献   

16.
It is pointed out that the observation of the electrostatic ion acoustic wave frequency can be a suitable check to determine whether the produced plasma is a pure pair-ion plasma or whether it comprises some concentration of electrons. A theoretical model for the pair-ion plasma dynamics is presented along with a new electrostatic mode which can exist only in such systems. It can become unstable in the presence of shear flow and it can give rise to vortex structures in the nonlinear regime. The possibility of shocks and solitons, due to nonlinear drift waves in a pair-ion plasma comprising electrons, is also discussed. The relevance of this investigation to both laboratory and astrophysical plasmas is pointed out.  相似文献   

17.
A constant electric field changes the linear growth rates of ion sound waves. The corrections are small, if the field energy is lower than the electron thermal energy times the ratio of electron to ion mass. They depend also on the nonlinear variation of the particle distributions.  相似文献   

18.
Study of dust ion acoustic waves in a magnetized dusty plasmas composed of negatively or positively charged static dust, positive and negative ions, as well as kappa distribution electrons is presented. The Zakharov–Kuznetsov (ZK) equation is derived via reductive perturbation technique. The solitary wave solution of ZK equation is given and the multi-dimensional instability of these solitary waves is investigated via small k perturbation method. The instability criterion and growth rate relying on obliqueness, superthermality, positive ion thermal pressure, relative ion number density, magnetic field strength, and direction cosines are discussed for five cases. The results are beneficial to understand different nonlinear characteristics of unstable electrostatic disturbances in laboratory and space plasmas.  相似文献   

19.
The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.  相似文献   

20.
利用GTC程序和HL-2A装置的实验数据,对托卡马克边缘等离子体中的漂移波微观不稳定性进行了线性数值模拟。模拟结果表明,在HL-2A边缘等离子体中捕获电子模(TEM)是不稳定的,它均匀且规则地分布在托卡马克的弱磁场区域,而且其增长率随着等离子体的温度梯度和密度梯度的增加而增加。另外,模拟结果还表明,TEM的实频率远远小于离子的漂移频率,这一点与理论研究结果是一致的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号