首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MgCl2/Et3N催化合成α,β-不饱和氰代酯   总被引:1,自引:0,他引:1  
章明  张爱琴  黄宜祥 《有机化学》2005,25(9):1133-1134
用MgCl2/Et3N催化氰乙酸乙酯和芳香醛的缩合反应合成α,β-不饱和氰代酯, 反应可在室温进行. 产率87%~92%.  相似文献   

2.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

3.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

4.
Asymmetric reduction of 2‐chloro‐3‐oxo esters was achieved by catalytic transfer hydrogenation using [RuCl2(p‐cymene)](S,S)‐TsDPEN as the chiral catalyst and HCOOH‐Et3N as the hydrogen source. Moderate to good yields (up to 85%) and good enantioselectivities (up to 98% ee) were obtained.  相似文献   

5.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

6.
A series of novel quinazolin‐4(3H)‐one derivatives were efficiently synthesized starting from isatoic anhydride. First, reaction of isatoic anhydride and amines in H2O at room temperature afforded 2‐aminobenzamides. Then, CuBr/Et3N promoted reaction of 2‐aminobenzamides and different aryl isothiocyanates in DMF at 80° afforded the title compounds in good yield.  相似文献   

7.
A series of pyrimidines were prepared by cyclocondensation of β‐bromovinyl aldehydes with amidine hydrochlorides in the presence of Et3N in excellent yields (74–95%).  相似文献   

8.
The anionic gold(I) complexes [1‐(Ph3PAu)‐closo‐1‐CB11H11]? ( 1 ), [1‐(Ph3PAu)‐closo‐1‐CB9H9]? ( 2 ), and [2‐(Ph3PAu)‐closo‐2‐CB9H9]? ( 3 ) with gold–carbon 2c–2e σ bonds have been prepared from [AuCl(PPh3)] and the respective carba‐closo‐borate dianion. The anions have been isolated as their Cs+ salts and the corresponding [Et4N]+ salts were obtained by salt metathesis reactions. The salt Cs‐ 3 isomerizes in the solid state and in solution at elevated temperatures to Cs‐ 2 with ΔHiso=(?75±5) kJ mol?1 (solid state) and ΔH=(118±10) kJ mol?1 (solution). The compounds were characterized by vibrational and multi‐NMR spectroscopies, mass spectrometry, elemental analysis, and differential scanning calorimetry. The crystal structures of [Et4N]‐ 1 , [Et4N]‐ 2 , and [Et4N]‐ 3 were determined. The bonding parameters, NMR chemical shifts, and the isomerization enthalpy of Cs‐ 3 to Cs‐ 2 are compared to theoretical data.  相似文献   

9.
The monomeric β‐diketiminate zinc complex (Mes)NacNacZnMe 1 (MesNacNac = {[2,6‐(2,4,6‐Me3‐C6H2)N(Me)C)]2CH}) was obtained in almost quantitative yield from the reaction of ZnMe2 with (Mes)NacNacH. Reaction of 1 with either Me3NHCl or a solution of HCl in Et2O yielded (Mes)NacNacZnCl 2 , whereas (Mes)NacNacZnI 3 was obtained from the reaction of 1 with I2. 1 – 3 were characterized by elemental analyses, mass and multinuclear (1H, 13C{1H}) NMR spectroscopy, 3·THF also by single crystal X‐ray analysis.  相似文献   

10.
In this study, we developed a new protocol for the preparation of the chiral 3‐[(E)‐enoyl]‐1,3‐oxazolidin‐2‐ones under the ultimately simple reaction conditions starting with the corresponding enoyl chlorides and 1,3‐oxazolidin‐2‐ones with Et3N/LiCl at room temperature. The method generally allows efficient preparation of various derivatives regardless of the steric and electronic nature of the substituents on both the enoyl or the oxazolidinone sites. Excellent yields, combined with the simplicity of the experimental procedures, render the present method immediately useful for preparing the target compounds.  相似文献   

11.
采用一个预制的簇合物(Et4N)2[MoS4(CuCN)2]·H2O(1)和HAc在MeCN中混合反应,生成了一个有趣的二维聚合簇合物(Et4N)3{[MoS4Cu2(m-CN)]2(m’-CN)}·2MeCN (2)。通过元素分析,红外光谱及单晶X-射线衍射分析对簇合物2进行了表征。在2的结构中,前驱体1中的MoS4Cu2簇核得到了保留,并且此簇核作为三重连接点通过单一氰桥和其他相同的簇核相连,形成一个阴离子型的2D (6,3)(蜂窝状)网络。由预制的簇合物1通过醋酸诱导形成的超分子2表明这种简单的合成方法有可能应用到许多其他相关的体系。  相似文献   

12.
The feasibility of the radical copolymerization of β‐pinene and acrylonitrile was clarified for the first time. The monomer reactivity ratios evaluated by the Fineman–Ross method were rβ‐pinene = 0 and racrylonitrile = 0.66 in dichloroethane at 60 °C with AIBN, which indicated that the copolymerization was a simple alternating copolymerization. The addition of the Lewis acid Et2AlCl increased the copolymerization rate and enhanced the incorporation of β‐pinene. The first example for the synthesis of an almost perfectly alternating copolymer of β‐pinene and acrylonitrile was achieved in the presence of Et2AlCl. Furthermore, the possible controlled copolymerization of β‐pinene and acrylonitrile was then attempted via the reversible addition–fragmentation transfer (RAFT) technique. At a low β‐pinene/acrylonitrile feed ratio of 10/90 or 25/75, the copolymerization with 2‐cyanopropyl‐2‐yl dithiobenzoate as the transfer agent displayed the typical features of living polymerization. However, the living character could be observed only within certain monomer conversions. At higher monomer conversions, the copolymerizations deviated from the living behavior, probably because of the competitive degradative chain transfer of β‐pinene. The β‐pinene/acrylonitrile copolymers with a high alternation degree and controlled molecular weight were also obtained by the combination of the RAFT agent cumyl dithiobenzoate and Lewis acid Et2AlCl. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2376–2387, 2006  相似文献   

13.
The two double‐bond isomers 3‐iodo‐2,6,6‐trimethylbicyclo[3.1.1]hept‐2‐ene ( 6b ) and 3‐iodo‐4,6,6‐trimethylbicyclo[3.1.1]hept‐2‐ene ( 11 ) were synthesized by reacting 2,6,6‐trimethylbicyclo[3.1.1]heptan‐3‐one ( 9 ) with hydrazine, followed by treatment with I2 in the presence of Et3N. Treatment of 11 with t‐BuOK as base in diglyme at 220° resulted in the formation of 9 and 6,6‐dimethyl‐4‐methylidenebicyclo[3.1.1]hept‐2‐ene ( 12 ). For the formation of 9 , the cyclic allene 7 is proposed as an intermediate. Treatment of the second isomer, 6b , with t‐BuOK at 170° gave rise to the diene 12 and the dimerization product 17 . The underlying mechanism of this transformation is discussed. On the basis of density‐functional‐theory (DFT) calculations on the allene 7 and the alkyne 15 , the formation of the latter as the intermediate was excluded.  相似文献   

14.
The synthesis of the title compounds was accomplished in four steps. The synthetic route involves the preparation of Schiff's base by reacting salicylaldehyde with m‐chloroaniline in EtOH. The Schiff's base was then reduced with NaBH4/MeOH. In the second step, PCl3 was reacted with p‐chlorophenol/p‐bromophenol in THF in the presence of Et3N to obtain P(III) dichloride derivatives. The reduced Schiff's base and dichloride derivatives were reacted in equimolar quantities in the presence of Et3N in THF to get the cyclized product. Alkyl azides were prepared by reacting alkyl bromides with sodium azide, and then alkyl azides were treated with the cyclized product to obtain the title compounds. The structure of these novel compounds was elucidated by elemental analysis, IR, 1H, 13C, 31P NMR, and mass spectroscopy. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:499–504, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20639  相似文献   

15.
The crystal structures of triethyl­ammonium adenosine cyclic 2′,3′‐phosphate {systematic name: triethyl­ammonium 4‐(6‐amino­purin‐9‐yl)‐6‐hydroxy­methyl‐2‐oxido‐2‐oxoperhydro­furano[3,4‐c][1,3,2]dioxaphosphole}, Et3NH(2′,3′‐cAMP) or C6H16N+·C10H11N5O6P, (I), and guanosine cyclic 2′,3′‐phosphate monohydrate {systematic name: triethyl­ammonium 6‐hydroxy­methyl‐2‐oxido‐2‐oxo‐4‐(6‐oxo‐1,6‐dihydro­purin‐9‐yl)perhydro­furano[3,4‐c][1,3,2]dioxaphosphole monohydrate}, [Et3NH(2′,3′‐cGMP)]·H2O or C6H16N+·C10H11N5O7P·H2O, (II), reveal different nucleobase orientations, viz. anti in (I) and syn in (II). These are stabilized by different inter‐ and intra­molecular hydrogen bonds. The structures also exhibit different ribose ring puckering [4E in (I) and 3T2 in (II)] and slightly different 1,3,2‐dioxaphospho­lane ring conformations, viz. envelope in (I) and puckered in (II). Infinite ribbons of 2′,3′‐cAMP and helical chains of 2′,3′‐cGMP ions, both formed by O—H⋯O, N—H⋯X and C—H⋯X (X = O or N) hydrogen‐bond contacts, characterize (I) and (II), respectively.  相似文献   

16.
A direct enantioselective vinylogous Mannich reaction of ketimines with γ‐butenolide has been developed. Good yields and enantioselectivities were observed for the reaction of various ketimines by using a cinchona alkaloid amide/Zn(OTf)2 catalyst and Et3N. Both enantiomers of the products could be obtained by using pseudoenantiomeric chiral catalysts.  相似文献   

17.
A one pot simple procedure for the synthesis of β-keto phosphonates has been developed using the MgCl2/Et3N base system to generate the magnesium enolate of diethyl phosphonoacetic acid. This intermediate reacts with acid chlorides or imidazolides to give, after workup, the title compounds in good yields.  相似文献   

18.
The low‐electron‐count cationic platinum complex [Pt(ItBu’)(ItBu)][BArF], 1 , interacts with primary and secondary silanes to form the corresponding σ‐SiH complexes. According to DFT calculations, the most stable coordination mode is the uncommon η1‐SiH. The reaction of 1 with Et2SiH2 leads to the X‐ray structurally characterized 14‐electron PtII species [Pt(SiEt2H)(ItBu)2][BArF], 2 , which is stabilized by an agostic interaction. Complexes 1 , 2 , and the hydride [Pt(H)(ItBu)2][BArF], 3 , catalyze the hydrosilation of CO2, leading to the exclusive formation of the corresponding silyl formates at room temperature.  相似文献   

19.
The first primary 2‐aminocarba‐closo‐dodecaborates [1‐R‐2‐H2N‐closo‐CB11H10]? (R=H ( 1 ), Ph ( 2 )) have been synthesized by insertion reactions of (Me3Si)2NBCl2 into the trianions [7‐R‐7‐nido‐CB10H10]3?. The difunctionalized species [1,2‐(H2N)2closo‐CB11H10] ( 3 ) and 1‐CyHN‐2‐H3N‐closo‐CB11H10 (H‐ 4 ) have been prepared analogously from (Me3Si)2NBCl2 and 7‐H3N‐7‐nido‐CB10H12. In addition, the preparation of [Et4N][1‐H2N‐2‐Ph‐closo‐CB11H10] ([Et4N]‐ 5 ) starting from PhBCl2 and 7‐H3N‐7‐nido‐CB10H12 is described. Methylation of the [1‐Ph‐2‐H2N‐closo‐CB11H10]? ion ( 2 ) to produce 1‐Ph‐2‐Me3N‐closo‐CB11H10 ( 6 ) is reported. The crystal structures of [Et4N]‐ 2 , [Et4N]‐ 5 , and 6 were determined and the geometric parameters were compared to theoretical values derived from DFT and ab initio calculations. All new compounds were studied by NMR, IR, and Raman spectroscopy, MALDI mass spectrometry, and elemental analysis. The discussion of the experimental NMR chemical shifts and of selected vibrational band positions is supported by theoretical data. The thermal properties were investigated by differential scanning calorimetry (DSC). The pKa values of 2‐H3N‐closo‐CB11H11 (H‐ 1 ), 1‐H3N‐closo‐CB11H10 (H‐ 7 ), and 1,2‐(H3N)2closo‐CB11H10 (H2‐ 3 ) were determined by potentiometric titration and by NMR studies. The experimental results are compared to theoretical data (DFT and ab initio). The basicities of the aminocarba‐closo‐dodecaborates agree well with the spectroscopic and structural properties.  相似文献   

20.
The title compound has been prepared from [Ti(η5‐C5Me5)Cl3] and cis‐cis‐(t‐BuSi(OH)—CH2)3 in hexane solution in the presence of Et3N. The pale yellow complex was characterized by NMR and MS spectra, as well as by a crystal structure determination. The two crystallographic independent molecules in the triclinic unit cell (space group P1¯, No. 2, Z = 4) both have a nearly identical adamantane‐like TiO3Si3C3 cage of approximate C3v symmetry. The exocyclic C—C—C bond angles in the Cp‐ligand range from 123° to 129°. A quantum chemical calculation of the free molecule predicts this range to be 124° to 127°. The arrangement of the molecules in the crystal is characteristic for an offset face‐to‐face ππ stacking of the aromatic η5‐C5Me5 rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号