首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The esterification reaction of n-butanol with acetic acid ([BuOH] : [HOAc] = 1 : 15 mol/mol; 55°C, 5% H2O) was studied in the presence of tungsten heteropoly acids of the Keggin (H3PW12O40, H4SiW12O40, H5PW11TiO40, H5PW11ZrO40, and H3PW11ThO39) and Dawson structure (-H6P2W18O62, H6P2W21O71(H2O)3, H6As2W21O69(H2O), and H21B3W39O132). The reaction orders with respect to H6P2W21O71(H2O)3, H3PW12O40, and H6P2W18O69are equal to 0.78, 1.00, and 0.97, respectively. It was found that the reaction rate depends on the acidity, as well as on the structure and composition of heteropoly acids. The H21B3W39O132heteropoly acid is most active, whereas the Keggin-structure heteropoly acids exhibit the lowest activities. Of the Keggin structure heteropoly acids, H5PW11ZrO40exhibits the highest activity because of the presence of a Lewis acid site in its structure.  相似文献   

2.
在水热条件下,用1,10-邻菲罗啉-5,6-二酮(Do)作为中性配体合成了3个基于Keggin型多金属氧化物的化合物(HDo)6(PW12O40)2·H2O(1),[Cu(Do)2(H2O)]2[Cu(Do)2(PW12O40)(H2O)](PW12O40)(2)和[Pb(Do)2(PW12O40)](HDo)(3),并对其进行了元素分析、红外光谱、电感耦合等离子体分析、X射线光电子能谱、热重分析以及荧光光谱等表征。单晶X射线衍射分析表明化合物12为零维结构,化合物3是一维链状结构。  相似文献   

3.
在水热条件下,用1,10-邻菲罗啉-5,6-二酮(Do)作为中性配体合成了3个基于Keggin型多金属氧化物的化合物(HDo)6(PW12O40)2·H2O(1),[Cu(Do)2(H2O)]2[Cu(Do)2(PW12O40)(H2O)](PW12O40)(2)和[Pb(Do)2(PW12O40)](HDo)(3),并对其进行了元素分析、红外光谱、电感耦合等离子体分析、X射线光电子能谱、热重分析以及荧光光谱等表征。单晶X射线衍射分析表明化合物1和2为零维结构,化合物3是一维链状结构。  相似文献   

4.
苏浩  杨春 《催化学报》2014,35(7):1224-1234
以Keggin结构的磷钨酸和三乙胺(TEA)为原料,通过简单的酸碱反应合成了磷钨酸的TEA盐.并以它们为催化剂,考察了以H2O2为氧化剂、以水为溶剂的体系中苯甲醇选择氧化制备苯甲醛的反应性能.结果表明,(TEAH)nH3-nPW12O40(n=1,2,3)系列催化剂对苯甲醇的选择氧化反应有很高的活性和选择性,且可被分离和循环使用.在适宜的反应条件下,最佳催化剂(TEAH)H2PW12O40上,苯甲醇的转化率可达99.6%,苯甲醛的选择性为100%.还采用IR,31PNMR谱和元素分析技术,对催化剂和反应过程中催化剂物种的转化和分布进行了考察,进而导出了反应机理.在这个水--油两相反应中,(PW12O403-首先在H2O2的作用下,氧化降解为溶于水的小分子过氧物种(PO4(WO(O2243-和自由W物种.(PO4(WO(O2243-是真正的活性物种,可将部份溶于水层的苯甲醇氧化为苯甲醛,自身转变为失去活性氧的反应后物种(SAR).而SAR又可与自由W物种一起聚合为前驱体状态的(PW12O403-,完成催化循环.  相似文献   

5.
Two new banana-shaped tungstophosphates [M6(H2O)2(PW9O34)2(PW6O26)]17 ? (MII?=?NiII, CoII) incorporating two types of lacunary polyoxometalate units have been synthesized in aqueous solution and characterized by elemental analyses, IR, and UV spectra, and single-crystal X-ray diffraction. Structural analyses show that Na6H11[Ni6(H2O)2(PW9O34)2(PW6O26)]?·?32H2O (1) and Na7H10[Co6(H2O)2(PW9O34)2(PW6O26)]?· 31H2O (2) are generated from two tri-MII substituted B-α-[(MOH2)M2PW9O34] Keggin units connected by a hexavacant [PW6O26]11? Keggin fragment, leading to the MII-containing banana-shaped tungstophosphates. Magnetic properties of 2 show decrease of the molar magnetic susceptibility at higher temperatures results from spin-orbit coupling of CoII and antiferromagnetic interactions whereas the maximum at the lower temperatures is indicative of the ferromagnetic interactions within the trinuclear CoII spin cluster in the sandwich belt.  相似文献   

6.
Gold nanoparticles loaded onto Keggin‐type insoluble polyoxometalates (CsxH3?xPW12O40) showed superior catalytic performances for the direct conversion of cellobiose into gluconic acid in water in the presence of O2. The selectivity of Au/CsxH3?xPW12O40 for gluconic acid was significantly higher than those of Au catalysts loaded onto typical metal oxides (e.g., SiO2, Al2O3, and TiO2), carbon nanotubes, and zeolites (H‐ZSM‐5 and HY). The acidity of polyoxometalates and the mean‐size of the Au nanoparticles were the key factors in the catalytic conversion of cellobiose into gluconic acid. The stronger acidity of polyoxometalates not only favored the conversion of cellobiose but also resulted in higher selectivity of gluconic acid by facilitating desorption and inhibiting its further degradation. On the other hand, the smaller Au nanoparticles accelerated the oxidation of glucose (an intermediate) into gluconic acid, thereby leading to increases both in the conversion of cellobiose and in the selectivity of gluconic acid. The Au/CsxH3?xPW12O40 system also catalyzed the conversion of cellulose into gluconic acid with good efficiency, but it could not be used repeatedly owing to the leaching of a H+‐rich hydrophilic moiety over long‐term hydrothermal reactions. We have demonstrated that the combination of H3PW12O40 and Au/Cs3.0PW12O40 afforded excellent yields of gluconic acid (about 85 %, 418 K, 11 h), and the deactivation of the recovered H3PW12O40–Au/Cs3.0PW12O40 catalyst was not serious during repeated use.  相似文献   

7.
A novel 3‐connected SrSi2‐type 3D chiral framework constructed from hexa‐NiII‐cluster‐substituted polyoxometalate (POM) units [Ni(enMe)2]3[WO4]3[Ni6(enMe)3(OH)3PW9O34]2?9H2O ( 1 ) (enMe=1,2‐diaminopropane) has been made from a hydrothermal synthetic method. This POM represents the first 3D framework based on {Ni6PW9} units and {WO4} connectors.  相似文献   

8.
The mesoporous titanium dioxide (MTiO2) photocatalysts co‐doped with Fe and H3PW12O40 were synthesized by template method using tetrabutyl titanate (Ti(OC4H9)4), Fe(NO3)k39H2Oand H3PW12O40 as precursors and Pluronic P123 as template. The as‐prepared photocatalyst was characterized by N2 adsorption‐desorption measurements, X‐ray diffraction (XRD), scanning electron microscopy (SEM) and UV‐vis adsorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl blue (MB) (50 mg/L) in an aqueous solution. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of ca. 10 nm with high surface area of ca. 150 m2/g. The results of MB photodecomposition showed that co‐doped mesoporous TiO2 exhibited higher photocatalytic activities than un‐doped, single‐doped mesoporous TiO2 under UV and visible light irradiation. It was shown that the co‐doped MTiO2 could be activated by visible light and could thus be used as an effective catalyst in photo‐oxidation reactions. The synergistic effect of Fe and H3PW12O40 co‐doping played an important role in improving the photocatalytic activity.  相似文献   

9.
Three polyoxometalate supramolecular assemblies based on rigid 2-(4-thiazolyl)benzimidazole (L) and two types of polytungstate anions, [CuII2Cl(L)4(PW12O40)]·3H2O (1), [CuII(L)2(H2O)]2[P2W18O62]·(HL)2·6H2O (2), and [ZnII(L)3]4[H(KPW12O40)3] (3), have been synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, and IR spectra. Compound 1 contains binuclear copper clusters {Cu2L4Cl}3+ with Cl as bridges. These binuclear clusters and [PW12O40]3– anions construct a supramolecular 2-D layer through hydrogen-bonding interactions. In 2, the [CuL2(H2O)]2+ subunits and Wells–Dawson anions build a 1-D supramolecular chain. In 3, the [PW12O40]3– anions are covalently linked by K+ to form an inorganic chain. These chains and discrete [ZnII(L)3]2+ subunits construct a 3-D supramolecular structure. The electrochemical and photocatalytic properties of 13 have been studied.  相似文献   

10.
Isoxazolo[5,4‐d]pyrimidine‐4,6(5H,7H)diones 2a – 2f have been synthesized from the reaction of ethyl 5‐amino‐3‐methyl‐4‐isoxazole carboxylate ( 1 ) with aryl isocyanates in the presence of Keggin heteropolyacid H3[PW12O40] as a green solid acid catalyst at room temperature in a one‐pot process in good yields.  相似文献   

11.
1-Butyl-3-methylimidazolium dodecatungstophosphate catalyst ([bmim]3PW12O40) with high water tolerance was prepared from 1-butyl-3-methylimidazolium bromide ([bmim]Br) and phosphotungstic acid (H3PW12O40). The catalyst was characterized by means of Fourier transform infrared spectroscopy, thermogravimetry-differential scanning calorimetry, n-BuNH2 potentiometric titration, elemental analysis and so on. Its catalytic activity for esterification of ethanol and acetic acid to ethyl acetate was measured. The results show that there were three crystal-water molecules in the [bmim]3PW12O40 catalyst, and it preserved the primary Keggin structure and acid strength of H3PW12O40. The acid amount of [bmim]3PW12O40 catalyst was less than that of H3PW12O40. The [bmim]3PW12O40 catalyst exhibited higher catalytic activity and reusability in the esterification of ethanol and acetic acid to ethyl acetate. __________ Translated from Chinese Journal of Catalysis, 2008, 29(7) (in Chinese)  相似文献   

12.
《Analytical letters》2012,45(2):259-273
Abstract

The construction and electrochemical response characteristics of poly(vinyl chloride) matrix ion‐selective electrodes (ISEs) for papaverine hydrochloride are described. The membranes incorporate ion association complexes of papaverine with tetraphenylborate {[B(C6H5)4]?}, picrate {[C6H2(NO2)3O]?}, tetraiodomercurate [(HgI4)]2?, tetraiodobismuthate [(BiI4)?], Reinecke salt {[Cr(NH3)2(SCN)4]?} and heteropolycompounds of Keggin structure–molybdophosphoric acid [H3(PMo12O40)], tungstophosphoric acid [H3(PW12O40)], molybdosiliconic acid [H4(SiMo12O40)], and tungstosiliconic acid [H4(SiW12O40)] as electroactive materials for ionometric sensor controls. These ISEs show linear response for papaverine hydrochloride over the range from 1×10?5 up to 5×10?2 mol/l with cationic slopes from 42 up to 58 mV per concentration decade. These ISEs exhibit fast response time (up to 1 min), low determination limit (up to 1×10?5 M), good stability (3–5 weeks) and reasonable selectivity. The ISEs were used for direct potentiometry and potentiometric titration {Na[B(C6H5)4]} of papaverine hydrochloride in pharmaceutical preparations. Results with mean accuracy of 98.6±0.9% of nominal were obtained, which correspond well to data obtained with the European Pharmacopoeial method.  相似文献   

13.
Summary CexTi1-xO2 and H3PW12O40/CexTi1-xO2 catalysts were prepared using a sol-gel method, and applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. H3PW12O40/CexTi1-xO2 showed a better catalytic performance than the corresponding CexTi1-xO2, due to the bifunctional catalysis of Br?nsted acid sites (provided by H3PW12O40) and base sites (provided by CexTi1-xO2). H3PW12O40/Ce0.1Ti0.9O2 showed the highest catalytic performance among the H3PW12O40/CexTi1-xO2 catalysts.  相似文献   

14.
The electrochemical behavior of two manganese (Mn)‐substituted polyoxoanions, the dissymmetrical Dawson sandwich‐type [MnII4(H2O)2(H4AsW15O56)2]18? and the Keggin sandwich banana‐shaped [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17? is investigated. At pH 5, the oxidation of the MnII‐centers results in one oxidation wave for [MnII4(H2O)2(H4AsW15O56)2]18? and two oxidation waves for [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17?. To the best of our knowledge, presence of the second Mn‐based wave is rarely observed in the electrochemistry of Mn‐containing polyoxometalates. Deposition of Mn‐oxides electrocatalysts for dioxygen reduction is noticed by cyclic voltammetry, which can be distinguished by the significant positive shift in potentials of the dioxygen reduction reaction.  相似文献   

15.
The reaction of α-H3[PW12O40] with Y(NO3)3 in the presence of DMF or DMSO leads to two complexes with the formulae {Y(DMSO)7}·PW12O40(1) and {[Y(DMF)7]2PW12O40}·PW12O40(2). The crystal structures indicate that complex 1 consists of discrete [YLn]3+ cations and α-Keggin heteropolyanions [PW12O40]3-, whereas, in complex 2, donor-acceptor interaction results in a cation-anion-cation triplet. In addition, the electrochemical behavior of the two complexes indicates the usual successive reduction processes of the W atoms in the anions.  相似文献   

16.
A new structural polyoxometalate motif, [{Ni4(OH)3AsO4}4(B‐α‐PW9O34)4]28?, which contains the highest nuclearity structurally characterized multi‐nickel‐containing polyanion to date, has been synthesized and characterized by single‐crystal X‐ray diffraction, temperature‐dependent magnetism and several other techniques. The unique central {Ni16(OH)12O4(AsO4)4} core shows dominant ferromagnetic exchange interactions, with maximum χmT of 69.21 cm3 K mol?1 at 3.4 K. Significantly, this structurally unprecedented complex is an efficient, water‐compatible, noble‐metal‐free catalyst for H2 production upon visible light irradiation (photosensitizer=[Ir(ppy)2(dtbbpy)][PF6]; sacrificial electron donor=triethylamine or triethanolamine). The highest turnover number of approximately 580, corresponding to a best quantum yield of approximately 4.07 %, is achieved when using triethylamine as electron donor in the presence of water. The mechanism of this photodriven process has been probed by time‐solved luminescence and by static emission quenching.  相似文献   

17.
Two new CuII coordination polymers based on α‐Keggin polyoxotungstates, [Cu2(dpa)2(H2O)2(GeW12O40)] · 0.5CH3COOH ( 1 ) and [Hdpa][Cu2(dpa)2(4,4′‐bipy)(H2O)2(PW10V2O40)] ( 2 ) (dpa = 2,2′‐dipyridylamine, 4,4′‐bipy = 4,4′‐bipyridine), were obtained by solvothermal reactions in glacial acetic acid and characterized by elemental analysis, IR spectroscopy, TG analysis, X‐ray powder diffraction, and single‐crystal X‐ray diffraction. Compound 1 exhibits a 1D two‐rowed chain constructed from [GeW12O40]4– anions coordinated with [Cu(1)(dpa)]2+ and [Cu(2)(dpa)(H2O)2]2+ fragments by four terminal oxygen atoms. Compound 2 exhibits a 2D layered structure constructed from [PW10V2O40]5– anions coordinated with [Cu(dpa)(4,4′‐bipy)0.5(H2O)]2+ fragments by four terminal oxygen atoms. Furthermore, the electrochemical properties of 1 and the photocatalytic hydrogen production of 1 and 2 were investigated.  相似文献   

18.
Two novel 5‐fluorouracil derivatives of rare earth (Sm, Eu) substituted polyoxometalates, K9(C4H4FN2O2)2Sm(PW11O39)2·11H2O (FSmPW) and K9H(C4H4FN2O2)Eu(PW11O39)2·11H2O (FEuPW) were synthesized and characterized by element analysis, ICP, FT‐IR, 1H NMR and XRD analysis. Thermal stability analysis was performed by TG and FT‐IR. The results of MTT assay show that FSmPW and FEuPW have higher cytotoxicity than known compound C4H4FN2O2H2PW12O40·8H2O, and the IC50 values of FSmPW and FEuPW are 4.20, 3.49 µmol·L?1 against HeLa cells and 4.62, 7.19 µmol·L?1 against HepG‐2 cells. Apoptosis analysis reveals the apoptosis inducing activity of the two compounds, which may play an important role in the cytotoxicity of polyoxometalates.  相似文献   

19.
Some nitriles reacted with camphene in the presence of heteropolyacids (H3PW12O40, H4SiW12O40, H7PMo12O40) as catalyst to give N-(1,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-substituted amides in fairly high yields.  相似文献   

20.
A poly(methacrylamide-co-methylmethacrylate) (abbreviated PMAA-MMA) polymer support was studied for supporting a heteropolyacid (tungstophosphoric acid, H3PW12O40) with its surface positively charged in the polymerization step. PMAA-MMA supports could be obtained in a porous form by eliminating template reagent molecules (benzylmalonic acid) combined with properly selected monomer (methacrylamide). The amount of amine groups in PMAA-MMA directly determined the amount of H3PW12O40 impregnated, because the amine groups induced a positive charge on the PMAA-MMA surface. Finally, H3PW12O40/PMAA-MMA showed better acid catalytic activities than unsupported H3PW12O40 in alkylation of 1,3,5-trimethylbenzene with cyclohexene, which confirmed that PMAA-MMA supported H3PW12O40 effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号