首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bulk form of nanograined intermetallic Al3Ni was produced by severe plastic deformation using high-pressure torsion (HPT). Powder mixtures of 75?mol% Al and 25?mol% Ni were processed by HPT at a selected temperature in the range of room temperature (RT) to 573?K under a pressure of 6?GPa. X-ray diffraction analysis revealed that the Al3Ni intermetallic formed after processing for 50 revolutions at RT but, as the processing temperature increased, less revolutions (i.e. lower imposed strain) were required for the formation of Al3Ni. Observations by transmission electron microscopy showed that the microstructure consists of ultrafine grains having a size of 300–2000?nm after 3 and 10 revolutions. Once the Al3Ni formed after a higher number of revolutions, equiaxed nanograins with a size of ~30?nm prevailed with a significant increase in hardness. The increase in hardness was more significant when processed at higher temperatures because of increasing the fraction of Al3Ni. It was shown that the solid-state formation of Al3Ni occurred due to enhanced diffusion (i.e. decreased activation energy for diffusion) through the presence of high density of lattice defects.  相似文献   

2.
Disks of pure Cu and several Cu–Al alloys were processed by high-pressure torsion (HPT) at room temperature through different numbers of turns to systematically investigate the influence of the stacking fault energy (SFE) on the evolution of microstructural homogeneity. The results show there is initially an inhomogeneous microhardness distribution but this inhomogneity decreases with increasing numbers of turns and the saturation microhardness increases with increasing Al concentration. Uniform microstructures are more readily achieved in materials with high or low SFE than in materials with medium SFE, because there are different mechanisms governing the microstructural evolution. Specifically, recovery processes are dominant in high or medium SFE materials, whereas twin fragmentation is dominant in materials having low SFE. The limiting minimum grain size (d min) of metals processed by HPT decreases with decreasing SFE and there is additional evidence suggesting that the dependence of d min on the SFE decreases when the severity of the external loading conditions is increased.  相似文献   

3.
P-type Bi2Te3-based thermoelectric semiconductors were prepared, having a grain-refined microstructure and a preferred orientation of anisotropic crystallographic structure. Disks with a nominal composition of Bi0.5Sb1.5Te3.0 were cut from an ingot grown by the vertical Bridgman method (VBM) and deformed at 473 K under a pressure of 6.0 GPa by high-pressure torsion (HPT). The crystal orientation was characterized by X-ray diffraction. The microstructures were characterized using optical microscopy and scanning electron microscopy (SEM). It was found that the HPT disks had a fine and preferentially oriented grain compared to that of the VBM disks. Further, the power factor of the HPT disks was about twice as large as that of the VBM disks. These results indicate that HPT is effective in improving the thermoelectric properties of Bi2Te3-based thermoelectric semiconductors.  相似文献   

4.
The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase (σRS) and martensitic phase (σMS) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses σRS and σMS and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.  相似文献   

5.
A coarse-grained W–25% Cu alloy is subjected to high-pressure torsion (HPT) at room temperature to different strains. Evolution of the microstructure during HPT processing is studied using X-ray diffraction analysis, scanning and transmission electron microscopy. It is demonstrated that HPT processing results in fragmentation of the tungsten particles and the formation of a 5–15?nm grain size nanostructure at equivalent strains of ≥256 (saturation). It is shown that the nanostructured W–25% Cu is thermostable up to 500°C, with grain growth up to 50?nm at 720°C. During HPT processing, the lattice parameter of the copper and tungsten was found to increase and decrease, respectively, with increased level of equivalent strain. This is proposed to occur through the interdiffusion of copper atoms into tungsten grains and tungsten atoms into copper grains, as suggested by energy-dispersive X-ray analysis of the individual grains. The formation of a limited solid solution is considered and possible mechanisms for this effect discussed.  相似文献   

6.

In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ1 (Nd, Dy)2(Fe, Co, Cu) 14B. After HPT at room temperature (THPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ1 phase with the melt at the temperature Teff= ∼1100°C. The thus determined Teff value is called the effective temperature. When the THPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe2B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ1+ Fe2B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature THPT, the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature Teff in the equilibrium phase diagram. The previously predicted decrease in Teff with an increase in THPT is observed for the first time.

  相似文献   

7.
M?ssbauer and magnetic measurements have been carried out both on single crystals and polycrystalline samples of BaZn2Fe16O27 (Zn2-W) hexagonal ferrite. The saturation magnetization at 0 K and at room temperature turns out to be very high, that is, 123 and 79 Gauss·cm3/g, respectively. The results have been interpreted by assuming a local reversal or a weakening of the Fe3+ magnetic moments due to the perturbing action of Zn2+ ions. The magnetic anisotropy is confirmed to be uniaxial with an anisotropy field at room temperature of 12.500 Oe.  相似文献   

8.
Response of Zr–2.5 wt.% Nb alloy pressure tube, used in PHWR nuclear reactors, to 315 keV Ar9+ ion irradiation at room temperature was investigated in the fluence range of 3.1?×?1015–4.17?×?1016 Ar9+?cm?2. Changes in microstructural parameters, viz., the size of coherently scattering domains, microstrain and dislocation density, upon irradiation were ascertained through grazing incidence X-ray diffraction. In general, a decrease in domain size was observed with fluence with a corresponding increase in microstrain and dislocation density. Residual stress measurement showed the development of compressive stresses in place of tensile after irradiation. Transmission electron microscopy showed the formation of dislocation loops of ?a?-type and ?c?-type during irradiation. The hardness of irradiated samples, probed through nanoindentation technique, was found to be higher in comparison with unirradiated samples. The above findings have been rationalised on the basis of the defects generated during the Ar9+ ion irradiation.  相似文献   

9.
Modification of Bi4Ti3O12 multiferroic ceramics prepared by a conventional solid state reaction method were investigated by substituting Ti partly with Fe. The introduction of Fe does not change the layered perovskite structure of Bi4Ti3O12. Upon increasing Fe content, the remnant polarization of the samples is enhanced. The magnetism of the ceramics at room temperature develops from diamagnetism to weak ferromagnetism with increasing Fe doping. The largest variations of 15% and 6% in remnant polarization and magnetization, achieved in a Bi4Ti1Fe2O12?δ sample after poling it in a magnetic field at 1 T and a DC electric field at 30 kV/cm for 10 min, are evidence of magnetoelectric coupling between the electric dipoles and magnetic dipoles at room temperature. The present results suggest a new candidate for a room temperature multiferroic material with enhanced properties.  相似文献   

10.
This paper reports that amorphous silicon nitride (a-SiNx) overcoats were deposited at room temperature by microwave ECR plasma enhanced unbalanced magnetron sputtering. The 2 nm a-SiNx overcoat has better anti-corrosion properties than that of reference a-CNx overcoats (2-4.5 nm). The superior anti-corrosion performance is attributed to its stoichiometric bond structure, where 94.8% Si atoms form Si-N asymmetric stretching vibration bonds. The N/Si ratio is 1.33 as in the stoichiometry of Si3N4 and corresponds to the highest hardness of 25.0 GPa. The surface is atomically smooth with RMS < 0.2 nm. The ultra-thin a-SiNx overcoats are promising for hard disks and read/write heads protective coatings.  相似文献   

11.
SrTiO3 and CaTiO3 conventional bulk materials are incipient ferroelectrics. In this note, we report for the first time that ferroelectricity could occur in SrTiO3 nanocrystalline disks even at room temperature. The peak in the temperature dependence of permittivity for a CaTiO3 nanocrystalline disk at a low temperature is also observed. The observed ferroelectricity (or permittivity peak) in SrTiO3 (or CaTiO3) nanocrystalline disks could be attributed to the strain effect.  相似文献   

12.
Olivine-structured LiMnPO4 nanoparticles were prepared by microwave-assisted solvothermal method. The as obtained LiMnPO4 sample was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and impedance spectroscopy techniques. The XRD pattern confirms the formation of LiMnPO4 phase with an orthorhombic structure. The electrical conductivity of the sample at room temperature is found to be 1.2654?×?10?7 S cm?1. Dielectric spectra show an increase in dielectric constant with increase of temperature. The dielectric loss spectra reveal the predomination of DC conduction in the sample. The modulus studies indicate the non-Debye nature of the sample which corresponds to the distribution of elements in the sample. Galvanostatic battery testing showed that LiMnPO4 nanoparticles displayed good cycleability in 30 cycles.  相似文献   

13.
The microstructure and mechanical properties of off-stoichiometric single-crystal Fe2AlMn have been investigated. After casting, the alloy contained two sets of thermal antiphase boundaries, (a/4)?111? and (a/2)?100?, which are attributed to the fact that the compound solidifies into a bcc structure and subsequently orders to a B2 structure and then a L21 structure respectively upon further cooling. Crystals strained under tension at room temperature in air at 1s?1 showed 6% elongation, whereas specimens strained at 1?×?10?5?s?1 showed no elongation, indicating that the compound is sensitive to the testing environment. Fracture occurred on {100} in both cases. Compression tests showed that a yield anomaly was present at intermediate temperatures, with the peak yield strength occurring at about 800?K, which is slightly below the L21–B2 transition temperature of 898?K. The slip systems were found to be ?111?{110} at room temperature and 800?K. Transmission electron microscopy observations showed fourfold-dissociated ?111? dislocations in specimens strained at room temperature but only paired ?111? dislocations in specimens strained at the peak temperature. The room-temperature yield strength of quenched specimens increased with increasing quench temperatures from 700 to 1100?K.  相似文献   

14.
Composites with partially amorphous matrix were synthesized by mechanical alloying of an Al50Ti40Si10 elemental powder blend in a high energy planetary ball-mill, followed by high pressure (8 GPa) low temperature (350–450°C) sintering. Microstructural studies and compositional micro-analysis were carried out using scanning and transmission electron microscopy, and energy dispersive spectroscopy, respectively. Phase evolution as a function of milling time and isothermal temperature and their thermal stability was determined by X-ray diffraction at room or elevated temperature and differential scanning calorimetry, respectively. The microstructure of composites sintered between room temperature and 450°C showed nano-size (≈50 nm) crystalline precipitates of Al3Ti dispersed in an amorphous matrix. The composites sintered at 400°C with 8 GPa pressure exhibited the highest density (3.58 Mg/m3), nanoindentation hardness (8.8 GPa), Young's modulus (158 GPa) and compressive strength (1940 MPa). A lower hardness and modulus on sintering at 450°C is attributed to additional amorphous to nanocrystalline phase transformation and partial coarsening of Al3Ti.  相似文献   

15.
Cu–4.5 wt % Cr and Cu–4.5 wt % Cr–3 wt % Ag alloys, with and without nanocrystalline Al2O3 dispersions (particle size <10 nm), were synthesized by mechanical alloying/milling and consolidated by equal-channel angular pressing (ECAP) at ambient temperature. Microstructural characterization and phase analysis by X-ray diffraction, as well as scanning and transmission electron microscopy, provided evidence for the formation of a Cu-rich extended solid solution with nanometric (<30 nm) crystallite size after 25 h of milling, with uniformly dispersed alumina nanoparticles embedded in it. Consolidation of Cu–4.5 wt % Cr–3 wt % Ag alloy with 10 wt % nanocrystalline Al2O3 by eight ECAP passes was shown to result in a composite with an exceptionally large hardness of 390 VHN and enhanced wear resistance. The electrical conductivity of the pellets of the latter alloy without Al2O3 is about 30% IACS (international annealing copper standard), whereas pellets with 5 or 10 wt % Al2O3 dispersion exhibit a conductivity of about 20–25% IACS. Thus, the present room temperature synthesis and consolidation route appear to offer a promising avenue for developing high-strength, wear/erosion-resistant Cu-based electrical contacts with nano-ceramic dispersion.  相似文献   

16.
The spectroscopic features of free radicals produced in gamma irradiation of the N-methyl-dl – alanine, N,N – dimethyl glycine hydrochloride and d – (+) – galactosamine hydrochloride were investigated at room temperature at the dose 15?kGy using EPR technique. The paramagnetic species observed in these compounds were identified as CH3?HCOOH, ?HOH(CHOH)3NH2(CH)2O, and (CH3)2N?HCOOH.HCl, respectively. A comparison with a new paramagnetic species recently observed and characterized in irradiated amino acids indicates that the new radical presented here has a similar structure. In this paper, we have also studied the stability of these compounds at room temperature after irradiation.  相似文献   

17.
We have measured the electrical conductivity and thermoelectric power of quinolinium (TCNQ)2 in the pressure range from atmospheric to 20 kilobars at room temperature and for 15 kilobars from 300 K to 30 K. The room temperature conductivity is enhanced by a factor of seven at 20 kilobars in a manner similar to TTF-TCNQ, whereas the thermopower is only slightly reduced (~ 30%). At 15 kilobars the low temperature behavior remains dominated by disorder and Coulomb correlations.  相似文献   

18.
ABSTRACT

The stored energy and activation energy for recrystallization were investigated for a Cu-Ni-Si alloy after high-pressure torsion processing for N?=?½, 1, 5 and 10 turns at room temperature. The contributions of geometrically necessary dislocations (GNDs), statistically stored dislocations (SSDs) and vacancies to the stored energy were calculated through the Vickers microhardness measurements, kernel average misorientation (KAM) measurements and an analysis by differential scanning calorimetry (DSC). The results show that the total stored energy decreases rapidly after equivalent strain of εeq?~?9 and then saturates through εeq?~?86 at ~70 J/mol. Concurrently, the local stored energy in GNDs and SSDs was found to depend strongly on the radial distance from the centre of the disc and increase with increasing equivalent strain at εeq?~?16 and saturate with further straining. Accordingly, the results indicate that the GNDs and vacancies are responsible for the high stored energy in the initial stage of deformation at equivalent strain range of εeq?=?8.6–16 and thereafter their contribution decreases slightly due to the occurrence of dynamic recrystallization and the formation of fine grains. At the same time, the contribution of the SSDs is similar to that of the GNDs only in high strain deformation as at εeq?=?49.3 to accommodate the deformation process. An activation energy for recrystallization was estimated in the range of ~?89.7–98.7 kJ/mol, thereby suggesting poor thermal stability.  相似文献   

19.
Isotope separation of tritium from deuterium in heavy water was attempted by CO2-laser-induced, highly-selective multiphoton dissociation of C2TF5 present in C2DF5. Single-step T/D separation factors exceeding 3000, 1000, and 500 were attained, respectively, for the first time with CO2 laser 10P(34) 931.0 cm?1 at 10, 20, and 30 Torr pentafluoroethane pressures at ?78 °C (i.e., equivalent to 15, 30, and 45 Torr at room temperature).  相似文献   

20.
FePt films were rf sputtered at room temperature and 550?C on MgO monocrystalline substrates. Room temperature films were post-annealed at 550?C. The high temperature growth induces a tetragonal distortion of the structure with the formation of L10-FePt phase. Soft iron layers, with different thickness, were e-beam deposited on these hard films. The phenomena occurring at the interface have been analysed and connected with the final magnetic behaviour of the system. It has been found that a strong exchange coupling between soft and hard layers has been established through the formation of an interfacial layer constituted by FePt small particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号