首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen chemical constituents were isolated from the CHCl3 soluble portion of the heartwood of Melaleuca leucadendron L. These compounds include β-sitosterol (1) , β-sitostenone (2) , 6-hydroxy-4,6-dimethyl-3-hepten-2-one (3) , naphthalene (4) , squalene (5) , 2α3β-dihydroxyurs-12-en-28-oic acid (6) , 3β-hydroxylup-20(29)-en-27,28-dioic acid (7) , 2α,3β-dihydroxyolean-12-en-28-oic acid (8) , 3β,23-dihydroxyolean-12-en-28-oic acid (9) , 2α,3β,23-trihydroxyolean-12-en-28-oic acid (10) , 3β-trans-p-coumaroyloxy-2α,23-dihydroxyolean-12-en-28-oic acid (11) , and three novel oleanane derivatives 23-trans-p-coumaroyloxy-2α,3β-dihydroxyotean-12-en-28-oic acid (12), 3β-trans-caffeoyloxy-2α,23-dihydroxyolean-12-en-28-oic acid (13) , and its isomer 3β-cis-caffeoyloxy-2α,23-dihydroxyolean-12-en-28-oic acid (14) , The three novel compounds were characterized as the two and three O-methylated derivatives, respectively.  相似文献   

2.
Two new labdane diterpenoids, s-trans-8(17),12E,14-labdatrien-20-oic acid (1), s-trans-12E,14-labdadien-20,8β-olide (2), along with 10 known compounds, hinokiol (3), ursonic acid (4), 2α,3α-dihydroxyolean-12-en-28-oic acid (5), 2α,3β,23-trihydroxyolean-12-en-28-oic acid (6), ethyl 3-(3,4-dihydroxyphenyl)lactate (7), ethyl rosmarinate (8), (Z,E)-2-(3,4-dihydroxyphenyl)ethenyl caffeic ester (9), tridecanoic acid (10), β-sitosterol (11) and daucosterol (12), were isolated from the 70% acetone extract of the rhizomes of Isodon yuennanensis. Their structures were elucidated based on the analyses of extensive spectroscopic data and physicochemical properties.  相似文献   

3.
Microbial transformation of ursolic acid (1) was carried out by Alternaria longipes AS 3.2875. Six transformed products (27) from 1 were isolated and their structures were identified as 3-carbonyl ursolic acid 28-O-β-D-glucopyranosyl ester (2), ursolic acid 3-O-β-D-glucopyranoside (3), ursolic acid 28-O-β-D-glucopyranosyl ester (4), 2α, 3β-dihydroxy ursolic acid 28-O-β-D-glucopyranosyl ester (5), 3β, 21β dihydroxy ursolic acid 28-O-β-D-glucopyranosyl ester (6), and 3-O-(β-D-glucopyranosyl)- ursolic acid 28-O-(β-D-glucopyranosyl) ester (7) based on the analysis of 1D NMR, 2DNMR and MS data. The product 2 was a new compound among them and showed stronger antibacterial activity against S. aureu, MRSA and MRCA than substrate. In this study, we modified structure of ursolic acid through biotransformation to enhance its activities and preliminarily discussed the transformation way of the products.  相似文献   

4.
Two new compounds: 3-β,15-α,23,28-tetrahydroxyolean-12-en-3-O-arabinopyaranoside and 3-β,23,28-trihydroxy-olean-12-en-3-O-β-D-glucopyranoside were isolated from the aerial parts of Ammania auriculata along with the known compounds kaempferol, β-sitosterol-3-O-β- D-glucoside, 2-α,3-β,23-trihydroxyolean-12-en-28-oic acid-28-O-β-D-glucopyranoside, quercetin, kaempferol-3-O-α-L-arabinofuranoside, kaempferol-3-O-β-D-xylopyranoside and ellagic acid. Structures of these compounds were elucidated on the basis of their spectroscopic data (NMR, UV, MS and IR spectra). The antioxidant activities of the total extract, the fractions CH(2)Cl(2), EtOAc and the remaining aqueous together with the compounds 1, 6 and 9 were comparable with that of the standard antioxidant, ascorbic acid.  相似文献   

5.
The 13C NMR spectra of some pentacyclic triterpenoids, 3β-acetoxy-11-oxo-olean-12-ene-30-oic acid methyl ester, 3β-acetoxy-11-oxo-olean-12-ene-29-oic acid methyl ester, the corresponding 11-desoxo methyl esters, 3β-acetoxy-11-oxo-18α-olean-12-en-30-oic acid methyl ester and 3β-acetoxy-11-oxo-18α-olean-12-en-29-oic acid methyl ester are discussed. The shielding data are interpreted in term of the different orientation of the carbomethoxy group and of the change in configuration at the D/E ring junction and are diagnostically valuable for the differentiation of the mentioned compounds.  相似文献   

6.
The ethyl acetate soluble fraction from the roots of Sanguisorba tenuifolia was found to have a hypoglucemic effect in alloxan-induced diabetic rats. Two new triterpenoids, identified as 2-oxo-3β,19α-dihydroxyolean-12-en-28-oic acid β-D-gluco-pyranosyl ester (1) and 2α,19α-dihydroxy-3-oxo-12-ursen-28-oic acid β-D-glucopyranosyl ester (4) were isolated from this fraction, along with thirteen known triterpenoids. Their structures were elucidated by chemical and spectroscopic methods. All these compounds demonstrated inhibitory activities against α-glucosidase with IC?? values in the 0.62-3.62 mM range.  相似文献   

7.
A new triterpenoid saponin.3 β-O-{ β-D-glucopyranosyl-(1—4)-[ β-D-glucopyranosyl-[1-2)]- α-L-arabinopyranosyl}-16α, 28-dihydroxyolean-12-en-30-oic acid 30-O- β-D-glucopyranosyl ester(ardisicrenoside N.1),together with two known saponins, ardisicrenoside C(2) and D(3),were isolated from the roots of Ardisia crenata Sim.Their structures were elucidated by extensive spectral analysis and chemical evidences.Saponins 1 showed cytotoxicity against MCI-7 and NCI-H460 cancer cell lines at 11.0μmol/L and 22.1μmol/L in vitro.  相似文献   

8.
Three new triterpenoid saponins (1-3) were isolated from the dried aerial parts of Dianthus superbus L. (Caryophyllaceae). Their structures were established as 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-6-O-((3S)-3-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (1), 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-glucopyranosyl(1→3)][β-D-6-O-((3S)-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (2), 3-O-α-L-arabinopyranosyl-3β,16α-dihydroxyolean-12-en-23,28-dioic acid 28-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside (3), on the basis of various spectroscopic analyses and chemical degradations.  相似文献   

9.
Three novel diterpene glycosides were isolated for the first time from the commercial extract of the leaves of Stevia rebaudiana, along with several known steviol glycosides, namely stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compounds were identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-15-en-19-oic acid, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-16β-hydroxy-ent-kauran-19-oic acid and 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester on the basis of extensive 2D NMR and MS spectroscopic data as well as chemical studies.  相似文献   

10.
A new diterpene glycoside from Stevia rebaudiana   总被引:1,自引:0,他引:1  
From the commercial extract of the leaves of Stevia rebaudiana, a new diterpene glycoside was isolated besides the known steviol glycosides including stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compound was identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-α-L-rhamnopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive spectroscopic (NMR and MS) and chemical studies.  相似文献   

11.
Synthesis of two ent-kaurane diterpene glycosides, steviol 19-O-β-D-glucopyranosiduronic acid (steviol glucuronide, 5), and 13-hydroxy ent-kaur-16-en-19-oic acid-β-D-glucopyranosyl ester (7) has been achieved from a common starting material, steviol, using phase transfer catalyst. Also, synthesis of an additional 17-nor-ent-kaurane glycoside, namely 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester (10) was performed using the starting material isosteviol and similar synthetic methodology. Synthesis of all three steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR as well as mass spectral (MS) data.  相似文献   

12.
Our ongoing investigations on the stem bark of Uncaria macrophylla afforded a new ursolic triterpene, 3β,6β,19α-trihydroxy-urs-12-en-28-oic acid-24-carboxylic acid methyl ester (1), named uncariursanic acid, and three known ursolic triterpenes including 3β,6β,19α-trihydroxy-23-oxo-urs-12-en-28-oic acid (2), 3β,6β,19α-trihydroxy-urs-12-en-28-oic acid (3) and ursolic acid (4). Their structures were elucidated by extensive spectral methods, including 1D and 2D NMR and HR-ESI-MS. The cytotoxicities of the four compounds were evaluated against two cancer cell lines (MCF-7 and HepG2) by the MTT method, and only compound 4 exhibited potent activity.  相似文献   

13.
Guided by a hemostasis bioassay, seven terpene glycosides were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the grounds of chemical and spectroscopic methods, their structures were identified as citronellol-1-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (1), geraniol-1-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (2), geraniol-1-O-α-Larabinopyranosyl-(1→6)-β-D-glucopyranoside (3), 3β-[(α-L-arabinopyranosyl)oxy]-19α-hydroxyolean-12-en-28-oic acid 28-β-D-glucopyranoside (4), 3β-[(α-L-arabinopyranosyl)-oxy]-19α-hydroxyurs-12-en-28-oic acid 28-β-D-glucopyranoside (ziyu-glycoside I, 5), 3β,19α-hydroxyolean-12-en-28-oic acid 28-β-D-glucopyranoside (6) and 3β,19α-dihydroxyurs-12-en-28-oic acid 28-β-D-glucopyranoside (7). Compound 1 is a new mono-terpene glycoside and compounds 2, 3 and 5 were isolated from the Sanguisorba genus for the first time. Compounds 1–7 were assayed for their hemostatic activities with a Goat Anti-Human α2-plasmin inhibitor ELISA kit, and ziyu-glycoside I (5) showed the strongest hemostatic activity among the seven terpene glycosides. This is the first report that ziyu-glycoside Ι has strong hemostatic activity.  相似文献   

14.
The stems of Akebia quinata have been analyzed for their triterpene glycoside constituents, resulting in the isolation of six new triterpene glycosides, along with 19 known ones. On the basis of extensive spectroscopic analysis, including 2D NMR data, and chemical evidence, the structures of the new compounds were deter-mined to be 3beta-[(O-beta-D-glucuronopyranosyl-(1-->3)-alpha-L-arabinopyranosyl)oxy]olean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, 3beta-[(O-beta-D-glucuronopyranosyl-(1-->3)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]olean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, 3beta-[(O-beta-D-glucuronopyranosyl-(1-->3)-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, 3beta-[(O-beta-D-glucuronopyranosyl-(1-->3)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-29-hydroxyolean-12-en-28-oic acid, and 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23,29-dihydroxyolean-12-en-28-oic acid, respectively. The main triterpene glycosides contained in the stems of A. quinata were found to have two sugar units at C-3 and C-28 of the aglycone in this study, whereas those of Akebia trifoliate were reported to possess one sugar unit at C-28 of the aglycone. It may be possible to distinguish between A. quinata and A. trifoliate chemically by comparing their triterpene glycoside constituents.  相似文献   

15.
五叶木通中一个新的三萜成分   总被引:1,自引:0,他引:1  
对五叶木通藤茎进行了较为系统的研究, 从其体积分数为80%的乙醇提取物的正丁醇部分分离得到3个三萜成分, 通过理化性质和波谱分析鉴定为: 3α,24-二羟基-30-去甲齐墩果烷-12,20(29)-双烯-28-酸(Ⅰ); 3α,24,29-三羟基齐墩果烷-12-烯-28-酸(Ⅱ); 2α,3β,23-三羟基齐墩果烷-12-烯-28-酸(Ⅲ). 其中化合物Ⅱ为新化合物, 命名为木通茎酸(Quinatic stem acid).  相似文献   

16.
The structures of 6 new oleanene glycosides (1--6) isolated from the leaves of Acanthopanax japonicus FRANCH et. SAVART (Araliaceae) were elucidated by mass, 1D, and 2D NMR spectroscopy. The structures of 1--6 were established as 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester of 3beta,23-dihydroxy-olean-12-en-28,29-dioic acid, 3beta,30-dihydroxy-olean-12-en-23,28-dioic acid, 3beta,29-dihydroxy-olean-12-en-23,28-dioic acid (=dianic aicd), 3beta-dihydroxy-olean-12-en-23,28-dioic acid (=gypsogenic acid), 3beta,29-dihydroxy-23-oxo-olean-12-en-28-oic acid, and 3beta-hydroxy-23-oxo-olean-12-en-28,29-dioic acid, designated acanjaposide D (1), E (2), F (3), G (4), H (5), and I (6), respectively.  相似文献   

17.
Two new triterpenoid saponins were isolated from the roots of Rhaponticum uniflorum.Their structures were elucidated as 3-O-[β-D-glucopyranosyl] -ilexolic acid-28-O-[β-D-glucopyranosyl]ester 1 and 3-O-[β-D-glucopyranosyl]-urs-12,19(29)-dien-oic acid-28-O-[β-D-glucopyranosyl]ester 2 mainly by 1D,2D NMR techniques and chemical methods.  相似文献   

18.
A new triterpenoid saponin, 3β,29-dihydroxy-olean-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester (1), together with four known triterpenoid saponins, i.e., oleanolic acid 28-O-β-D-glucoside (2), chikusetsusaponin IVa methyl ester (3), calenduloside E (4), and calenduloside E 6'-methyl ester (5), was isolated from Salicornia europaea Linn. Their structures were elucidated on the basis of spectral analysis.  相似文献   

19.
樊高骏  何直升 《中国化学》1998,16(5):442-447
Three new 27-nor-triterpenoid saponias named rubenorside A (1),rubenorside B(2) and rubenorside C (3) were isolated from the roots of Adina rubella.Their structures were characienzed as pyrocincholic acid 3β-O-α-L-rhamnopyranosyl(28→1 )-β-D-glucopyranosyl ester (1),pyrocinchohe acid 3β-O-β-D-glucopyranosyl(1→2)-β-D-fucopyranosyl(28→1)-β-D-glucopyranosyl(1→6)-β-D-glico-pyranosyl ester (2) and pyrocincholic acid 3β-O-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl(28→1)β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester () by spectral methods,especially 2D NMR experiments.  相似文献   

20.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号