首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
This is the first study on the phytochemistry and antioxidant activity of Ferula longipes Coss. ex Bonnier and Maury (Apiaceae). A new flavonoid quercetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-[2-O-caffeoyl]-glucopyranoside (1), along with 10 known compounds kaempferol-3-O-α-L-rhamnopyranoside (2), quercetin-3-O-α-L-rhamnopyranoside (3), kaempferol-3-O-ß-D-glucopyranoside-7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-glucopyranoside (5), quercetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-glucopyranoside (6), isorhamnetin-3,7-di-O-β-D-glucopyranoside (7), apigenin (8), apigenin-7-O-ß-D-glucopyranoside (9), 3,5-dicaffeoylquinic acid (10), deltoin (11) were isolated from the aerial parts of Ferula longipes Coss. Structures elucidation was performed by comprehensive 1D and 2D NMR analyses, mass spectrometry and by comparison with literature data. The compounds 1, 3, 4, 6, 7 and 10 were evaluated for their antioxidant activity, compound 1 exhibited the best antiradical activity potential and showed IC50 and A0.5 values 5.70, 7.25, 5.00, and 2.63 μg/mL towards DPPH free radical-scavenging, ABTS, CUPRAC, and reducing power assays, respectively compared with BHA, BHT and ascorbic acid which were used as positive controls.  相似文献   

2.
ABSTRACT

The stepwise synthesis of methyl α-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (EBC-OMe, 1), methyl α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (A(E)BC-OMe, 2), and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (DA(E)BC-OMe, 3) is described. Compounds 1, 2 and 3 constitute the methyl glycosides of fragments of the O-specific polysaccharide of Shigella flexneri serotype 5a. Methyl 2,4-di-O-benzoyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzoyl-α-L-rhamnopyranoside was an appropriate BC precursor for the synthesis of 1. For the synthesis of the branched targets 2 and 3, a benzyl group was best suited at position 2 of rhamnose C. Thus, methyl 4-O-benzyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside was the key intermediate to the BC portion. In all cases, 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride was a convenient E precursor, when used in combination with titanium tetrafluoride. All along, attention was paid to steric hindrance as a factor of major impact on the condensation steps outcome. Therefore, based on previous experience, 2-O-acetyl-3,4-di-O-allyl-α-L-rhamnopyranosyl trichloroacetimidate and 3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-α-D-glucopyranosyl trichloroacetimidate were used as donors. Both suited all requirements when used as key precursors for residues A and D in the synthesis of 3, respectively.  相似文献   

3.
Abstract

The synthesis is reported of 3-aminopropyl 3-O-[4-O(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-α-L-rhamnopyranoside (34), 3-aminopropyl 2-acetamido-3-O-[4-0-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-2-deoxy-β-D-galactopyranoside (37), 3-aminopropyl 3-O-[4-O-(β-L-rhamnopyranosyl)-α-D-glucopyranosyl]-α-D-galactofuranoside (41), and 3-aminopropyl 4-O-[4-O-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranoside (45). These are spacer-containing fragments of the capsular polysaccharides of Streptococcus pneumoniae type 2, 7F, 22F, and 23F, respectively, which are constituents of Pneumovax© 23. 2,3,4-Tri-O-benzyl-α-L-rhamnopyranosyl bromide was coupled to l,6-anhydro-2,3-di-(O-benzyl-β-D-glucopyranose (3). Opening of the anhydro ring, removal of AcO-1, and imidation of l,6-anhydro-2,3-di- O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnopyranosyl)-β-D-glucopyranose (4β) afforded 6-O-acetyl-2,3-di-O-ben-zyl-4-O-(2,3,4-tri- O-benzyl-β-L-rhamnopyranosyl)-αβ-D-glucopyranosyl trichloroacet-imidate (7αβ). Condensation of 7αβ with 3-N-benzyloxycarbonylaminopropyl 2-O-ben-zyl-5,6-O-isopropylidene-α-D-galactofuranoside (26), followed by deprotection gave 41 Opening of the anhydro ring of 4 p followed by debenzylation, acerylauon, removal of AcO-1, and imidation yielded 2,3,6-tri-(9-aceryl-4-O-(2,3,4-tri-0-acetyl-P-L-rharnnopyran-.-osyl)-α-D-glucopyranosyl trichloroacetimidate (11). Condensation of 11 with 3-N-bcn-zyloxycarbonylaminopropyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (18), with 3-N-bcn-zyloxycarbonylaminopropyl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyran-oside (21), or with 3-N -benzyloxycarbonylaminopropyl 2-O-acetyl-3-O-allyl-6-O-benzyl-β-D-galactopyranoside (31), followed by deprotection afforded 34, 37, and 45, respectively.  相似文献   

4.
A new flavonoid, dhasingreoside (1) and seven known compounds, quercetin 3-O-β-d-galacturonopyranoside (2), quercetin 3-O-β-d-galactopyranoside (3), quercetin 3-O-β-d-glucuronopyranoside (4), quercetin 3-O-α-l-rhamnopyranoside (5), (–)-epicatechin (6), salicylic acid (7) and gaultherin (8), have been isolated from the shade-dried stems and leaves of Gaultheria fragrantissima, commonly known as ‘Dhasingre’ in Nepal. The structures were elucidated on the basis of physical, chemical and spectroscopic methods. Among known compounds, five compounds (36 and 8) were isolated for the first time from G. fragrantissima. In vitro antioxidant activity of all the isolated compounds was evaluated by 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging assay. Dhasingreoside (1) and other compounds (26) showed significant free radical-scavenging activity.  相似文献   

5.
From the extracts of Dimocarpus longan Lour leaves, 2 unusual flavonol glycosides, quercetin 3-O-(3″-O-2?-methyl-2?-hydroxylethyl)-β-d-xyloside (1) and quercetin 3-O-(3″-O-2?-methyl-2?-hydroxylethyl)-α-l-rhamnopyranoside (2), as well as 10 known compounds including 2 flavonol glycosides, afzelin (3) and kaempferol-3-O-α-l-rhamnopyranoside (4), 2 flavans, ( ? )-epicatechin (5) and proanthocyanidin A-2 (6), 3 triterpenoids, friedelin (7), epifriedelanol (8) and β-amyrin (9), a peptide, N-benzoylphenylalanyl-N-benzoylphenylalaninate (10), and 2 sterols, β-sitosterol (11) and daucosterol (12) were isolated and identified by using combination of mass spectrometry and various 1D and 2D NMR techniques. This is the first report of flavonoid glycosides possessing a 2-methyl-2-hydroxylethoxyl group in sugar moiety from D. longan.  相似文献   

6.
A novel dimeric flavonol glycoside, Cynanflavoside A (1), together with six analogues, kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (5), kaempferol-3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (6), and quercetin-3-O-galactoside (7) were isolated from the n-butyl alcohol extract of Cynanchum acutum subsp. sibiricum. Their structures were determined spectroscopically and compared with previously reported spectral data. All compounds were evaluated for their anti-complementary activity in vitro, and only compound 5 exhibited anti-complement effects with CH50 value of 0.33 mM.  相似文献   

7.
The microbial transformation studies of 7-O-prenylquercetin (1), 4′-O-prenylquercetin (2) and quercetin (3) were investigated with 20 different microbial strains to discover new metabolites. It was revealed that the fungus Mucor hiemalis was the most appropriate micro-organism which was capable of transforming these flavonoids. Structures of the three new (4–6) and one known (7) metabolites were elucidated as 7-O-prenylquercetin 3-O-β-D-glucopyranoside (4), 4′-O-prenylquercetin 3-O-β-D-glucopyranoside (5), 4′-O-prenylquercetin 3′-O-β-D-glucopyranoside (6) and quercetin 5-O-β-D-glucopyranoside (7) by the spectroscopic methods.  相似文献   

8.
Three new acyltyramines, N-[2-(4-hydroxyphenyl)ethyl]hentriacontanamide (1), N-[2-(4-hydroxyphenyl)ethyl]nonacosanamide (2) and N-[2-(4-hydroxyphenyl)ethyl]heneicosanamide (3) have been isolated from n-hexane extract of leaves of Anisodus luridus (Solanaceae). Successive extraction of defatted leaves of A. luridus with methanol afforded a residue on removal of solvent under reduced pressure. Residue was partitioned by means of chloroform and n-butanol. Chromatographic resolution of n-BuOH extract afforded six known compounds, apigenin (4), luteolin (5), quercetin (6), quercetin 3-O-α-l-rhamnoside (7), kaempferol 3-O-α-rhamnoside (8) and quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (9). The structures of the isolated compounds were assigned with the help of spectroscopic techniques. This is the first report of isolation of these compounds from this plant.  相似文献   

9.
Two new phenylethanoid glycosides, namely β-D-glucopyranoside, 1″-O-(7S)-7-(3-methoxyl-4-hydroxyphenyl)-7-methoxyethyl-3″-α-L-rhamnopyranosyl-4″-[(8E)-7-(3-methoxyl-4-hydroxyphenyl)-8-propenoate] (1) and β-D-glucopyranoside, 1″-O-(7S)-7-(3-methoxyl-4-hydroxyphenyl)-7-methoxyethyl-3″-α-L-rhamnopyranosyl-4″-[(8E)-7-(4-hydroxyphenyl)-8-propenoate] (2), together with six phenylethanoid glycosides were isolated from Cirsium setosum. Their structures were elucidated by their spectroscopic data and references. Compounds 2, 4, 5, 7 and 8 (10 μM) exhibited moderate hepatoprotective activities. Compounds (3–8) were obtained from this plant for the first time.  相似文献   

10.
Two new diacetylene glycosides: bhutkesoside A (1) and B (2), along with 10 known compounds, i.e. falcarindiol (3), chlorogenic acid (4), 5-O-p-coumaroyl-quinic acid (5), 3,5-di-O-caffeoyl-quinic acid (6), 4-hydroxy-7-methoxy-phenylethanol (7), ferulic acid (8), dehydrodiconiferyl alcohol-4-O-β-d-glucopyranoside (9), 5,7-dihydroxy-2-methylchromone-7-O-rutinoside (10), schumanniofioside B (11) and marmesinin (12) were isolated from the roots of Ligusticopsis wallichiana (DC) Pimenov & Kljuykov (Apiaceae), commonly known as ‘Bhutkesh’ in Nepal. The structures were determined on the basis of spectroscopic data. Compounds 4 and 6 showed potent antioxidant activity on DPPH free radical scavenging assay.  相似文献   

11.
Synthesis of two isomeric tetrasaccharides, β-D-Glup-(1→2)-α-L-Rhap-(1→3)-α-L- Rhap-(1→2)-α-L-Rhap (I) and β-D-Glup-(1→3)-α-L-Rhap-(1→3)-α-L-Rhap-(1→3)-α-L-Rhap (II), the repeating units from the lipopolysaccharides of the nitrogen-fixing bacterium Azospirillum brasilense S17 and Azospirillum lipoferum SR65, was achieved via assembly of the building blocks 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl trichloroacetimidate (2), p-methoxyphenyl 3,4-di-O-benzoyl-α-L-rhamnopyranoside (3), 3-O-allyloxycarbonyl-2,4-di-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (6), 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl trichloroacetimidate (8), and p-methoxy phenyl 2,4-di-O-benzoyl-α-L-rhamnopyranoside (14). Condensation of 3 with 6 or 8 provided the disaccharides 9 or 11, respectively. Deallyloxycarbonylation of 11 gave the disaccharide aceptor 12, while removal of the p-methoxyphenyl group in 9 followed by trichloroacetimidation of the anomeric hydroxyl group afforded the disaccharide donor 10. Meanwhile, disaccharide donor 16 and acceptor 18 were prepared from 6, 8, and 14 similarly. Finally, condensation of 10 with 12 or 16 with 18, followed by deprotection, gave the target tetrasaccharides I or II, respectively.  相似文献   

12.
One new proline-containing flavonol glycoside, namely kaempferol-3-O-methyl-7-O-β-d-glucopyranosyl-8-(1-methyleneproline)-4′-O-β-d-glucopyranoside (1), together with 15 known flavonoids, 3-O-methylkaempferol (2), 3-O-methylquercetin (3), quercetin (4), kaempferol (5), apigenin (6), rhamnazin (7), astragalin (8), alquds (9), quercitrin (10), rutin (11), isoquercitrin (12), apigetrin (13), myricitrin (14), hesperidin (15) and calycosin-7-O-β-d-glucopyranoside (16) were isolated from the aerial parts of Caragana leucophloea Pojark. (Leguminosae). Their structures were determined on the basis of spectroscopic analyses and by comparison with literature data. Compounds 24 revealed a strong antimicrobial activity with minimum inhibitory concentration values of 12.5–150 μg/mL and median inhibitory concentration (IC50) values of 7.42–76.61 μg/mL. Compounds 3, 4, 68, 1012 and 14 showed strong antioxidant activity. Compounds 27 exhibited moderate antinematodal activity on Caenorhabditis elegans with IC50 values of 40.51–68.05 μg/mL.  相似文献   

13.
Abstract

A novel acylated quercetin glycoside, floralpanasenoside A (1) and five known flavonoid glycosides, panasenoside (2), quercetin 3-O-(2''-β-D-glucopyranosyl)-β-D- galactopyranoside (3), trifolin (4) kaempferol 7-O-α-L-rhamnoside (5), and afzelin (6) were isolated from the flower buds of Panax ginseng. Their structures were established by spectroscopic data and comparison with the literature values. Four of the six isolated compounds including 1 (IC50 = 62.4) exhibited α-glucosidase inhibitory activity with IC50 values lower than acarbose (385.2?μM). The molecular docking study indicated that 1 bound to the active site of α-glucosidase with numerous hydrogen bond interactions.  相似文献   

14.
The dichloromethane bark extract of Garcinia hombroniana yielded one new cycloartane triterpene; (22Z,24E)-3β-hydroxycycloart-14,22,24-trien-26-oic acid (1) together with five known compounds: garcihombronane G (2), garcihombronane J (3), 3β acetoxy-9α-hydroxy-17,14-friedolanostan-14,24-dien-26-oic acid (4), (22Z, 24E)-3β, 9α-dihydroxy-17,14-friedolanostan-14,22,24-trien-26-oic acid (5) and 3β, 23α-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid (6). Their structures were established by the spectral techniques of NMR and ESI-MS. These compounds together with some previously isolated compounds; garcihombronane B (7), garcihombronane D (8) 2,3’,4,5’-tetrahydroxy-6-methoxybenzophenone (9), volkensiflavone (10), 4’’-O-methyll-volkensiflavone (11), volkensiflavone-7-O-glucopyranoside (12), volkensiflavone-7-O-rhamnopyranoside (13), Morelloflavone (14), 3’’-O-methyl-morelloflavone (15) and morelloflavone-7-O-glucopyranoside (16) were evaluated for cholinesterase enzymes inhibitory activities using acetylcholinesterase and butyrylcholinesterase. In these activities, compounds 1–9 showed good dual inhibition on both the enzymes while compounds 10–16 did not reasonably contribute to both the cholinesterases inhibitory effects.  相似文献   

15.
Abstract

KDN-Lex ganglioside analogs (10, 13, 16 and 19) containing the modified reducing terminal and L-rhamnose in place of L-fucose have been synthesized. Glycosidation of methyl 2,3,4-tri-O-benzyl-1-thio-α-L-rhamnopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-α-D-galacopyranoside (2), followed by reductive ring opening of the benzylidene acetal, gave 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-rhamnopyranosyl)-(1→3)-O-(2-acet-amido-6-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4). The tetrasaccharide 4 was coupled with methyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside(5), using dimethyl(methylthio)sulfonium triflate (DMTST), to give the hexasaccharide 6, which was converted into compound 11 in the usual manner. Compounds 8 and 11 were transformed, via bromination of the reducing terminal, radical reduction, O-deacylation and saponification of the methyl ester, into the desired KDN-Lex hexasaccharides (10, 13). On the other hand, glycosylation of 2-(tetradecyl)hexadecanol with α-trichloroacetimidates 14 and 17, afforded the target ganglioside analogs 16 and 19.

  相似文献   

16.
Five ellagic acid glycosides were isolated from Aphananthe aspera and their structures were identified as 3-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (1), 3-O-methylellagic acid-4′-O-β-D-xylopyranoside (2), 3,3′-di-O-methylellagic acid-4′-O-β-D-xylopyranoside (3), 3,3′, 4-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (4), and 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (5) on the basis of spectroscopic analysis. Compound 1 is new, and all the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 458–459, September–October, 2007.  相似文献   

17.
Marsilea quadrifolia is an edible aquatic medicinal plant used as a traditional health food in Asia. Four new polyphenols including kaempferol 3-O-(2″-O-E-caffeoyl)-β-d-glucopyranoside (1), kaempferol 3-O-(3″-O-E-caffeoyl)-α-l-arabinopyranoside (3), 4-methy-3′-hydroxypsilotinin (4) and (±)-(E)-4b-methoxy-3b,5b-dihydroxyscirpusin A (18) together with 14 known ones (2, 517) were isolated from the ethanol extract of M. quadrifolia. Structures of the new compounds were elucidated by extensive spectroscopic analyses. In DPPH and oxygen radical absorbance capacity antioxidant assays, some compounds showed stronger antioxidant activities and quercetin (9) was the most potent antioxidant in both assays. In a restraint-induced oxidative stress model in mice, quercetin significantly attenuated the increase in plasma ALT and AST levels as well as liver MDA content of restrained mice. Liver SOD activity was also significantly increased by quercetin, indicating a significant in vivo antioxidant activity. As a rich source of polyphenols with strong antioxidant activities, M. quadrifolia may be developed to a product for relieving oxidative stress.  相似文献   

18.
Saraca asoca (Roxb.) de Wilde, a common tree of India, is popularly used in the Ayurvedic and modern herbal systems of medicine for genito-urinary problems of women. Considering the reported antimicrobial or anti-inflammatory effect of S. asoca bark against such infections, we studied the anti-inflammatory activity-guided isolation of active compounds from methanol extract. The methanol extract of bark has yielded 10 compounds out of which 3′-deoxyepicatechin-3-O-β-d-glucopyranoside (6) and 3′-deoxycatechin-3-O-α-l-rhamnopyranoside (8) have been found to be in vitro and in vivo active. 3′,5-Dimethoxy epicatechin (3), 3′-deoxyepicatechin-3-O-β-d-glucopyranoside (6), 3′-deoxycatechin-3-O-α-l-rhamnopyranoside (8) and epigallocatechin (9) are being reported for the first time from S. asoca.  相似文献   

19.
ABSTRACT

The stereocontrolled synthesis of methyl α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (EC, 1), methyl α-L-rhamnopyranosyl-(1→3)-[α-D-glucopyranosyl-(1→4)]-α-L-rhamnopyranoside (B(E)C, 3) and methyl α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyl-α-L-rhamnopyranoside (11) and 8 afforded the fully protected αE-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding βE-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding βE-disaccharide, namely, methyl β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (βEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the αE and βE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required αE-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.  相似文献   

20.
The chemical investigation of the extract of the dried leaves of Rauvolfia caffra (Sond) (synonym Rauvolfia macrophylla) (Apocynaceae) led to isolation of a new glycoside derivative, rauvolfianine (1) as well as six known compounds: oleanolic acid (2), sitosterol-3-O-β-D-glucopyranoside (3), betulinic acid (4), vellosimine (5), sarpagine (6) and D-fructofuranosyl-β-(2→1)-α-D-glucopyranoside (7). Compounds 1, 2, 3, 4 and 7 were evaluated for antitubercular activity. Compounds 1 and 2 were the most active (MIC = 7.8125 and 31.25 μg/mL) towards the Isoniazid resistant strain of Mycobacterium tuberculosis AC45. Their structures and relative stereochemistry were elucidated by spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号