首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Single crystals of K2Cu5Cl8(OH)4·2H2O were grown using hydrothermal techniques. The compound is monoclinic with a = 11.6424(11), b = 6.5639(4), c = 11.7710(10)Å, β = 91.09(1)°, V = 899.4(2)Å3, space group P21/c, Z = 2. The crystal structure was determined using single crystal X‐ray diffraction data and refined to a residual of R(|F|) = 0.025 for 1208 independent observed reflections with I > 2σ(I). Two out of three crystallographically independent Cu atoms are coordinated to four near hydroxyl groups or chlorine atoms and two more distant Cl atoms, giving an octahedrally Jahn‐Teller distorted (4+2)‐configuration. For the remaining third copper cation a square‐planar coordination can be found. Edge‐sharing of the octahedra results in the formation of kagome‐type sheets parallel to (100). The octahedral layers are decorated on both sides by planar [Cu(OH)2Cl2]‐units around the third Cu atom. The K atoms are located between adjacent sheets and are surrounded by six Cl atoms as well as two water molecules. The coordination polyhedra about the K‐atoms can be described as distorted bicapped trigonal prisms. Additional linkage is provided by intra‐ as well as inter‐layer hydrogen bonds (O—H···Cl, O—H···O).  相似文献   

2.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

3.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

4.
Single crystals of Cd(IO3)2·H2O are obtained by slow evaporation of aqueous solutions of CdCl2 and KIO3. This compound crystallizes in the triclinic space group P1¯ [a = 7.119(2), b = 7.952(2), c = 6.646(2)Å, α = 102.17(2)°, β = 114.13(2)°, γ = 66.78(4)°]. The structure consists in Cd — (μ2‐O)2 — Cd dimers with a metal — metal distance of 3.74Å. These dimers are connected through two iodate bridges resulting in layers parallel to the (010) plane. The 3D linkage is ensured by I1 — O1 long bonds (2.775Å).  相似文献   

5.
Polycrystalline anhydrous Hg2(NO3)2 was prepared by drying Hg2(NO3)2·2H2O over concentrated sulphuric acid. Evaporation of a concentrated and slightly acidified mercury(I) nitrate solution to which the same volumetric amount of pyridine was added, led to the growth of colourless rod‐like single crystals of Hg2(NO3)2. Besides the title compound, crystals of hydrous Hg2(NO3)2·2H2O and the basic (Hg2)2(OH)(NO3)3 were formed as by‐products after a crystallization period of about 2 to 4 days at room temperature. The crystal structure was determined from two single crystal diffractometer data sets collected at —100°C and at room temperature: space group P21, Z = 4, —100°C [room temperature]: a = 6.2051(10) [6.2038(7)]Å, b = 8.3444(14) [8.3875(10)]Å, c = 11.7028(1) [11.7620(14)]Å, ß = 93.564(3) [93.415(2)]°, 3018 [3202] structure factors, 182 [182] parameters, R[2 > 2σ(2)] = 0.0266 [0.0313]. The structure is built up of two crystallographically inequivalent Hg22+ dumbbells and four NO3 groups which form molecular [O2N‐O‐Hg‐Hg‐O‐NO2] units with short Hg‐O bonds. Via long Hg‐O bonds to adjacent nitrate groups the crystal packing is achieved. The Hg‐Hg distances with an average of d(Hg‐Hg) = 2.5072Å are in the typical range for mercurous oxo compounds. The oxygen coordination around the mercury dumbbells is asymmetric with four and six oxygen atoms as ligands for the two mercury atoms of each dumbbell. The nitrate groups deviate slightly from the geometry of an equilateral triangle with an average distance of d(N‐O) = 1.255Å.  相似文献   

6.
The brown crystals of [NEt4]2[Se3Br8(Se2Br2)] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraethylammonium bromide. The crystal structure of 1 has been determined by the X‐ray methods and refined to R = 0.0308 for 10433 reflections. The crystals are monoclinic, space group P21 with Z = 2 and a = 12.0393(3) Å, b = 11.8746(3) Å, c = 13.1946(3) Å, β = 96.561(1)° (123 K). In the solid state structure the anion of 1 is built up of Se3Br8 unit which consists of a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging Br atoms, and one Se2Br2 molecule which is linked to one of μ3‐bridging Br atoms. The three SeII atoms form a triangle which is almost perpendicular to the planes given by three SeBr4 moieties. The contact between the μ3Br and the SeI atom of the Se2Br2 molecule is 3.1711(8) Å and can be interpreted as a bond of the donor‐acceptor type with the μ3Br as donor and the Se2Br2 molecule as acceptor. The terminal SeII‐Br and μ3Br‐SeII bond lengths are in the ranges 2.3537(7)–2.4737(7) Å and 2.7628(7)–3.1701(7) Å, respectively. The bond lengths in coordinated Se2Br2 molecule are: SeI‐SeI = 2.2636(9) Å, SeI‐Br = 2.3387(11) and 2.3936(8) Å.  相似文献   

7.
Hydro­thermally prepared mansfieldite, AlAsO4·2H2O (aluminium arsenate dihydrate), contains a vertex‐sharing three‐dimensional network of cis‐AlO4(H2O)2 octahedra and AsO4 tetrahedra [dav(Al—O) = 1.907 (2) Å, dav(As—O) = 1.685 (2) Å and θav(Al—O—As) = 134.5 (1)°].  相似文献   

8.
La2O(CN2)2 was synthesized from a 1:1:2 molar reaction mixture of LaCl3, LaOCl, and Li2(CN2) at 650 °C. Well developed single crystals were grown from a LiCl‐KCl flux. The crystal structure was refined as monoclinic (space group C2/c, Z = 2, a = 13.530(2) Å, b = 6.250(1) Å, c = 6.1017(9) Å, β = 104.81(2)°) from single crystal X‐ray diffraction data. The La3+ and (CN2)2— ions in the crystal structure of La2O(CN2)2 can be compared to Fe3+ and S22— ions in the cubic pyrite structure, being arranged like in a distorted NaCl type structure with their centers of gravity. In addition, the O2— ions in La2O(CN2)2 are occupying 1/4 of the tetrahedral voids formed by the arrangement of metal ions.  相似文献   

9.
Polycrystalline mercurous diarsenate(V), (Hg2)2(As2O7), was prepared by a redox‐reaction between stoichiometric amounts of HgO and As2O3. Canary yellow single crystals were obtained by subsequent chemical transport reactions using HgCl2 as transport agent [550 → 500 °C, 5 d, sealed and evacuated silica ampoules]. The crystal structure (orthorhombic, Pnma, Z = 4, a = 9.9803(8), b = 12.2039(10), c = 7.2374(6)Å) is composed of two crystallographically independent Hgequation/tex2gif-stack-1.gif dumbbells ((Hg—Hg) = 2.5133Å) with a symmetric oxygen coordination sphere, and a diarsenate group with a staggered conformation and a bent bridging angle As—O—As = 121.0(7)°. The building units are arranged in a layer‐like assembly parallel to (010) and are connected via common oxygen atoms to form a three‐dimensional network.  相似文献   

10.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

11.
Hydrothermally synthesized dipotassium gallium {hydrogen bis[hydrogenphosphate(V)]} difluoride, K2Ga[H(HPO4)2]F2, is isotypic with K2Fe[H(HPO4)2]F2. The main features of the structure are ([Ga{H(HPO4)2}F2]2−)n columns consisting of centrosymmetric Ga(F2O4) octahedra [average Ga—O = 1.966 (3) Å and Ga—F = 1.9076 (6) Å] stacked above two HPO4 tetrahedra [average P—O = 1.54 (2) Å] sharing two O‐atom vertices. The charge‐balancing seven‐coordinate K+ cations [average K—O,F = 2.76 (2) Å] lie in the intercolumn space, stabilizing a three‐dimensional structure. Strong [O...O = 2.4184 (11) Å] and medium [O...F = 2.6151 (10) Å] hydrogen bonds further reinforce the connections between adjacent columns.  相似文献   

12.
The crystal structure of the ordered double perovskite Sr2MnTeO6 has been refined at ambient temperature from high resolution neutron and X‐ray powder diffraction data in the monoclinic space group I 1 2/m 1 with a = 5.6166(1) Å, b = 5.5807(1) Å, c = 7.8797(1) Å and β = 90.048(2)°. The structure is the result of out‐of‐phase (–) rotations of virtually undistorted NiO6 and TeO6 octahedra in the (0 – –) sense about two of the axes of the ideal cubic perovskite. Electron diffraction measurements have been used to confirm the proposed space group and structure.  相似文献   

13.
Single crystals of Sr5Al2F16 crystallize in colourless translucent plates and have been prepared by solid state synthesis, starting from stoichiometric mixtures of the binary fluorides. The crystal structure has been determined and refined from single crystal diffractometer data (orthorhombic, space group Ccca (no. 68), a = 7.4488(4) Å, b = 12.4714(7) Å, c = 14.1411(8) Å, V = 1313.67(13) Å3, Z = 4, R[F 2 > 2σ(F 2)] = 0.025; wR2(F 2 all) = 0.056, 971 structure factors, 56 parameters) and can be derived from a slightly distorted c.c.p. arrangement where 7/8 of the c.c.p. positions are occupied by the metal atoms. The main features of the structure are AlF6 octahedra and SrF8 polyhedra with mean distances d(Al–F) = 1.791 Å and d(Sr–F) = 2.531 Å, respectively.  相似文献   

14.
Li2CuII5(PO4)4 has been obtained by various reactions starting from copper or Cu2O. Crystallization was achieved using I2 as oxidant and mineralizer. The new orthophosphate crystallizes in space group P$\bar{1}$ , Z = 2, with a = 6.0502(3) Å, b = 9.2359(4) Å, c = 11.4317(5) Å, α = 75.584(2)°, β = 80.260(2)°, γ = 74.178(2)°, at 293 K. Its structure has been determined from X‐ray single‐crystal data and refined to R1 = 0.022{wR2 = 0.058 for 4633 unique reflections with Fo > 4σ (Fo)}. From magnetic measurements μeff = 1.51 μB/Cu and θP = –37.4 K have been determined. The Vis/NIR spectrum of aqua‐green Li2Cu5(PO4)4 shows a single broad band centered around $\bar{1}$ = 12000 cm–1. Magnetic behavior and spectrum are discussed within the angular overlap model.  相似文献   

15.
Abstract

[Cp2Fe2(CO)2(μ-CO)(μ-CHP(OPh)3)+][BF? 4] crystallizes in the centrosymmetric monoclinic space group P21/n with a = 12.553(7) Å, b = 16.572(11) Å, c = 15.112(8) Å, β = 100.00(4)°, V = 3096(3) Å3 and D(calcd.) = 1.579 g/cm3 for Z = 4. The structure was refined to R(F) = 5.83% for 1972 reflections above 4σ(F). The cation contains two CpFe(CO) fragments linked via an iron—iron bond (Fe(1)—Fe(2) = 2.544(3)Å), a bridging carbonyl ligand (Fe(1)—C(4) = 1.918(1) Å, Fe(2)—C(4) = 1.946(12)Å) and a bridging CHP(OPh)3 ligand (Fe(1)—C(1) = 1.980(9)Å, Fe(2)—C(1) = 1.989(8)Å). Distances within the μ-CHP(OPh)3 moiety include a rather short carbon—phosphorus bond [C(1)—P(1) = 1.680(10)Å] and P—O bond lengths of 1.550(7)–1.579(6)Å. The crystal is stabilized by a network of F…H—C interactions involving the BF? 4 anion.

[Cp2Fe2(CO)2(μ-CO)(μ-CHPPh3)+][BF? 4], which differs from the previous compound only in having a μ-CHPPh3 (rather than μ-CHP(OPh)3) ligand, crystallizes in the centrosymmetric monoclinic space group P21/c with a = 11.248(5)Å, b = 13.855(5)Å, c = 18.920(7)Å, β = 96.25(3)°, V = 2931(2)Å3 and D(calcd.) = 1.559 g/cm3 for Z = 4. This structure was refined to R(F) = 4.66% for 1985 reflections above 4σ(F). Bond lengths within the dinuclear cation here include Fe(1)-Fe(2) = 2.529(2)Å, Fe(1)—C(3) = 1.904(9) Å and Fe(2)—C(3) = 1.911(8) Å (for the bridging CO ligand) and Fe(1)—C(1P) = 1.995(6) Å and Fe(2)—C(1P) = 1.981(7) Å (for the bridging CHPPh3 ligand). Distances within the μ-CHPPh3 ligand include a longer carbon—phosphorus bond [C(1P)—P(1) = 1.768(6)Å] and P(1)—C(phenyl) = 1.797(7)–1.815(8) Å.  相似文献   

16.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

17.
Single crystals of the hitherto unknown compound Hg2(OH)(NO3)·HgO were obtained unintentionally during hydrothermal phase formation experiments in the system Ag—Hg— As—O. Hg2(OH)(NO3)·HgO (orthorhombic, Pbca, Z = 8, a = 6.4352(8), b = 11.3609(14), c = 15.958(2) Å, 1693 structure factors, 83 parameters, R1[F2 > 2σ(F2)] = 0.0431) adopts a new structure type and is composed of two types of mercury‐oxygen zig‐zag‐chains running perpendicular to each other and of intermediate nitrate groups. One type of chains runs parallel [010] and consists of (Hg—Hg—OH) units with a typical Hg—Hg distance of 2.5143(10) Å for the mercury dumbbell, whereas the other type of chains runs parallel [100] and is made up of (O—Hg—O) units with short Hg—O distances of about 2.02Å. Both types of chains are concatenated by a common O atom with a slightly longer Hg—O distance of 2.25Å. The three‐dimensional assembly is completed by nitrate groups whose O atoms show Hg—O distances > 2.80Å. Weak hydrogen bonding between the OH group and one oxygen atom belonging to the nitrate group stabilizes this arrangement. Hg2(OH)(NO3)·HgO decomposes above 200 °C to HgO.  相似文献   

18.
Co4(μ3-S)8(Ph2PCH2sP(O)Ph2)6, MW = 3012.5, space group R3 , has the hexagonal parameters, a = 26.764 (10), c = 16.979 (10) Å, V = 10532.8 Å3, Z = 3. Mo Ka radiation, λ = 0.71069 Å, Dc = 1.425 g/cm3, μ = 9.94 cm?3, F(000) = 4650, R = 0.073 and Rw = 0.077 for 1965 observed unique reflections with I > 3σ (I). The molecular structure consists of a distorted octahedral Co4—core. The Co—Co and Co—S distances fall in the range of 2.805—2.838 and 2.213—2.253 Å, respectively.  相似文献   

19.
We correct the crystal structure of MnF3, of which the space group was reported as monoclinic C2/c (no. 15) with a = 8.9202, b = 5.0472, c = 13.4748 Å, β = 92.64°, V = 606.02 ų, Z = 12, mS48, T not given, likely 298 K. In the structure model proposed here, we use a unit cell of one third of the former volume. The ruby red crystals of MnF3 were synthesized by a high-pressure/high-temperature method, where MnF4 was used as a starting material. As determined on a single crystal, MnF3 crystallizes in the monoclinic space group I2/a (no. 15) with a = 5.4964(11), b = 5.0084(10), c = 7.2411(14) Å, β = 93.00(3)°, V = 199.06(7) Å3, Z = 4, mS16, T = 183(2) K. The crystal structure of MnF3 is related by a direct group-subgroup transition to the VF3 structure-type. We performed quantum chemical calculations on the crystal structure to allow the assignment of bands of the obtained vibrational spectra.  相似文献   

20.
A novel complex [Li3{μ‐(H2O)6}(H2O)6]·[RuCl6] has been synthesized and was characterized by single‐crystal X‐ray diffraction. The compound crystallizes in rhombohedral space group Rc, with the unit cell parameters a = b = 9.948(2)Å, c = 33.376(14)Å, γ = 120°, V = 2860.5(15)Å3, Z = 6, Dc = 1.918 Mg m—3, μ = 1.703 mm—1, R = 0.0244, wR = 0.0478. The compound consists of a cation, which contains three lithium ions linked by six bridged water molecules, and an anion, which contains a ruthenium(III) ion. The whole complex can be described as a three‐dimensional structure linked by hydrogen bonds between cation and anion. The magnetic properties of the complex have been investigated. The IR, UV‐vis and EPR spectra are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号