首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and sensitive extractive spectrophotometric method has been developed for the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts using pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) as an analytical reagent. The reagent forms a red-color complex with the metal at pH 3.0, which is extracted into benzene. The absorbance is measured at 460 nm. The method adheres to Beer's law up to a concentration range of 0.4-6.4 microg cm(-3). The molar absorptivity and Sandell's sensitivity are 2.20 x 10(4) dm3 mol(-1) cm(-1) and 4.85 x 10(-3) microg cm(-2), respectively. The correlation coefficient of the Pd(II)-PPT complex is 0.99, which indicates an excellent linearity between two variables. The detection limit of this method is 0.05 microg cm(-3). The instability constant of the Pd(II)-PPT complex calculated from Edmond and Birnbaum's method is 2.90 x 10(-5) and that of Asmus' method is 2.80 x 10(-5) at room temperature. The concurrent repetition of the method is checked and the relative standard deviation (RSD) (n = 5) was derived as 1.84 percent. The present method was applied to the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts. The results were compared by employing an atomic-absorption spectrometer.  相似文献   

2.
A new chromogenic reagent, N-o-methylphenyl-N'-(sodium p-aminobenzenesulfonate)thiourea (MSAT), has been synthesized and characterized by elemental analysis, (1)H-NMR, FT-IR and UV-Vis spectra. Based on the absorption spectrum of the colored complex of MSAT with palladium(II), a novel spectrophotometric method for the determination of palladium has been developed. In a pH 4.0 - 5.5 HAc-NaAc buffer solution, palladium(II) reacted with MSAT to form a stable yellow water-soluble complex with an apparent molar absorptivity of epsilon = 2.04 x 10(5) L mol(-1) cm(-1) at the maximum absorption of 318.0 nm. Beer's law was obeyed in the concentration range of 1.2 - 11.8 microg per 25 mL for palladium(II) with a correlation coefficient of 0.9997. The probable interfering ions and their tolerable limits have also been investigated in detail. The proposed method is simple, rapid, and sensitive, and has been applied to the determination of palladium in anode mud and ore samples with satisfactory results.  相似文献   

3.
Yang H  Zhang G  Zhang L  Liu G  Zhang X 《Talanta》1996,43(5):747-753
A new pyridylazo reagent, 5-(5-nitro-2-pyridylazo)-2,4-diaminotoluene (5-NO(2)-PADAT) has been synthesized, and found to be a good chromogenic reagent for palladium. In sulfuric acid, hydrochloric acid and perchloric acid palladium reacts with 5-NO(2)-PADAT to form a 1:1 chelate, exhibiting an absorption maximum at 592 nm. The apparent molar absorptivity is 1.25 x 10(5) l(-1) mol(-1) cm(-1). Beer's law was obeyed in the range 0-0.9 microg ml(-1) Pd. Relatively large amounts of co-existing elements, including all other noble metals, can be tolerated. The method is simple and rapid, with high sensitivity and good selectivity and was applied to the determination of palladium in some industrial samples with satisfactory results.  相似文献   

4.
Some nitrophenols are proposed as chromogenic reagents for the spectrophotometric determination of flucloxacillin. The reagent forms a greenish yellow 1:1 complex with flucloxacillin at pH 9.0. This complex is stable for at least 3.0 h after its formation. The greenish yellow charge transfer complex species has an absorption maximum at 446, 435, 442, 473 and 439 nm for p-nitrophenol (I), 2,4-dinitrophenol (II), 3,5-dinitrosalycilic acid (III), picramic acid (IV) and picric acid (V), respectively, with a molar absorptivity between 1.43 x 10(4) and 2.59 x 10(4) l mol(-1) cm(-1). Beer's low is valid over the concentration range 2.0-40 microg ml(-1) of flucloxacillin. The detection and quantitation limits as well as relative standard deviation were also calculated. The reagents have been successfully used for the spectrophotometric determination of flucloxacillin in pure form and in pharmaceutical preparations.  相似文献   

5.
A simple and highly sensitive method was developed for the extractive-spectrophotometric determination of palladium with benzilidithiosemicarbazone. The metal ion formed a reddish brown complex with benzildithiosemicarbazone in a potassium chloride-hydrochloric acid buffer of pH 2.5, which was easily extractable into methyl isobutyl ketone. The 1:1 complex showed the maximum absorbance at 395 nm with a Beer's law range of 0.25-3.5 ppm. The molar absorptivity and Sandell's sensitivity were found to be 3.018 x 10(4) dm3 mol(-1) cm(-1) and 0.0035 microg cm(-2), respectively. The correlation coefficient of the Pd(II)-BDTSC complex was 0.998, which indicated an excellent linearity between the two variables. The repeatability of the method was checked by finding the relative standard deviation (RSD) (n = 10), which was 0.46%. The instability constant of the complex calculated from Edmond and Birnbaum's method was 2.41 x 10(-5), that of Asmus' method is 2.53 x 10(-5) at room temperature. The interfering effects of various cations and anions were studied. The proposed method was successfully applied to the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts. The validity of the method was tested by comparing the results with those obtained using an atomic absorption spectrophotometer.  相似文献   

6.
Gao J  Peng B  Fan H  Kang J  Wang X 《Talanta》1997,44(5):837-842
An effective spectrophotometric determination of palladium with 1-(2-pyridylazo)-2-naphthol (PAN) using molten naphthalene as a diluent has been studied. A green complex of palladium with PAN is formed at 90 degrees C. In the range of pH 1.5-7.5, the complex is quantitatively extracted into molten naphthalene. The organic phase is anhydrously dissolved in CHCl(3) to be determined spectrophotometrically at 678 nm against the reagent blank. Beer's law is obeyed over the concentration range of 0.5-10 ppm. The molar absorptivity and Sandell's sensitivity are 1.2 x 10(4) l mol(-1) cm(-1) and 0.0070 mg cm(-2), respectively. The optimum conditions for determination are obtained. The interferences of various ions are observed in detail. The method has been applied to the determination of palladium in synthetic samples.  相似文献   

7.
Sahu R  Sondhi SM  Gupta B 《Talanta》1995,42(3):401-405
A method for the extraction-spectrophotometric determination of palladium with 3,4,4a,5-tetrahydro-3,3,4a-trimethyl-7-(substituted)-pyrimido(1,6-a)benzimidazole-1-thiol (PBT) is described. PBT-Pd(II) complex is extracted from an acidic aqueous solution (0.01-0.5M HClO(4)) into a chloroform layer. The absorbance is measured at 438 nm and the molar absorptivity found to be 1.033 x 10(4)M(-1) cm(-1). The complex system conforms to Beer's law over the range 1.9-28.5 mug/ml palladium(II). The effects of pH (2-6), HClO(4) concentration, PBT concentration and shaking time were studied. The ratio of metal ion to ligand molecules in the coloured complex was found to be 1:4. The tolerance limit for many metals have been determined. Finally, the method has been applied successfully to the determination of palladium in synthetic mixtures and in the standard palladium carbon powder (palladium catalyst).  相似文献   

8.
Murthy GV  Reddy TS 《Talanta》1992,39(6):697-701
o-Hydroxyacetophenone thiosemicarbazone has been synthesized and employed as a new reagent for the spectrophotometric determination of palladium(II), which forms two complex species with it in aqueous dimethylformamide at pH 6.0, these having 1:1 and 1:2 metal-ligand ratios. The Job and molar-ratio plots have an unusual shape that is due to the stepwise conversion of the 1:1 complex into the 1:2 species. The molar absorptivity at 370 nm is 9 x 10(3) l.mole(-1).cm(-1). Beer's law is obeyed over the range 0.42-10.6 mug/ml palladium.  相似文献   

9.
分光光度法测定钯的新显色剂 2-四唑偶氮-5-二乙氨基酚   总被引:2,自引:0,他引:2  
研究了新显色剂2_四唑偶氮_5_二乙氨基酚 (TTZAPN)分光光度法测定Pd2 的条件。在 pH5.0的HAc -NaAc介质中 ,该试剂与Pd2 形成稳定的摩尔比为2∶1的紫红色络合物。其最大吸收波长在530nm处 ,表观摩尔吸光系数为4.51×104L·mol -1·cm -1 ,Pd2 质量浓度在0~1.0mg/L范围内遵守比尔定律。所拟方法直接测定钯 -碳催化剂和分子筛中微量钯 ,结果令人满意。  相似文献   

10.
A simple and highly sensitive spectrophotometric method for the determination of glucosamine and its analogous amino sugars was established based on fading of the palladium(II)-o-hydroxyhydroquinonephthalein-hexadecyltrimethylammonium complex. In the determination of glucosamine, Beer's law is obeyed in the range of 0.02 - 0.18 microg ml(-1), with an effective molar absorptivity at 630 nm and the relative standard deviation being 8.4 x 10(5) dm3 mol(-1) cm(-1) and 1.08% (n = 10). This method is about 70-times more sensitive than the Elson-Morgan method. The method was successfully applied to the assay of glucosamine in actual samples.  相似文献   

11.
This paper describes three sensitive spectrophotometric and spectrofluorimetric methods for determination of ramipril in its pure form and pharmaceutical tablets. The first method is based on the oxidation of the drug with 1-chlorobenzotriazole reagent (CBT) in strong alkaline medium followed by measuring the absorbance at 350 nm. The method obeys Beer's law over concentration range 15-50 microg ml(-1). For the second and third, both are non-extractive methods based on the formation of ternary complex between copper (II), eosin and ramipril in the presence of methylcellulose as surfactant. Spectrophotometrically, under the optimum condition, the ternary complex showed an absorption maximum at 543 nm. The method obeys Beer's law over concentration range of 20-80 microg ml(-1). A fluorescence quenching method for the determination of ramipril by forming this ternary complex was also investigated for the propose of enhance the sensitivity of the determination. The methods are simple, sensitive, and accurate. The results obtained are reproducible with a coefficient of variation less than 2%. The proposed have been successfully applied to the assay of ramipril in tablets. The results compare favorably with official method.  相似文献   

12.
《Analytical letters》2012,45(9):1737-1748
Abstract

Isonitroso-4-methyl-2-pentanone (HIMP) is proposed as a new reagent for extraction and photometric determination of Pd(II). The reagent forms a yellow complex with palladium in the pH range 4.0-5.0. The complex extracted into chloroform was measured at 330 nm. The molar absorptivity was found to be 5.37 × 103 1 mol?1 cm?1 and Sandell's sensitivity 20 ng cm?2 Beer's law was obeyed over the concentration range 0.1-10.0 μg/ml of palladium. The method is applicable for palladium estimation in Ores and catalysts.  相似文献   

13.
Prakash S  Singh RP  Trikha KC 《Talanta》1966,13(9):1393-1397
2-hydroxy-5-methylpropiophenone oxime (HMP) reacts with palladium in strongly acidic media to form a yellow water-insoluble complex. Palladium has been determined gravimetrically and interference by certain ions studied. The yellow complex is extractable into carbon tetrachloride in the pH range 1-4. The absorption maximum of the complex lies at 375 mmu, and Beer's law is obeyed in the range 0-15 ppm of palladium. The sensitivity is 0.22 mug Pd/cm(2) for log I(0)/I = 0.001. The effect of a number of foreign ions has been studied and several can be tolerated to an appreciable extent. The ratio of metal: ligand in the complex is 1:2.  相似文献   

14.
6-Chloro-3-hydroxy-2-(5'-methylfuryl)-4H-chromene-4-one (CHMFC) has been used as an analytical reagent for the spectrophotometric determination of molybdenum. Molybdenum(VI) in the presence of several cations, anions and complexing agents forms a yellow 1:2 complex with CHMFC. The complex is quantitatively extractable into 1,2-dichloroethane from 1 mol dm(-3) acetic acid medium and is stable for more than 6 h. The complex shows an absorption maximum at 438 nm with a molar absorptivity of 5.36 x 10(4) dm3 mol(-1) cm(-1) and Sandell's sensitivity equal to 0.0017 microg Mo cm(-2). The method obeys Beer's law up to 1.9 microg Mo ml(-1). The relative standard deviations are 0.2% for solutions and 0.5-1.5% for solid samples. The method is simple, selective, precise and rapid, and has been satisfactorily applied to the micro determination of molybdenum in various synthetic and standard samples.  相似文献   

15.
3-Hydroxy-2-[1'-phenyl-3'-(p-chlorophenyl)-4'-pyrazolyl]-4-oxo-4H-1benzopyran (HPCPB) is used as an analytical reagent for the spectrophotometric determination of niobium in trace amounts with which it forms a yellow coloured complex (4:1) in perchloric acid medium. The complex is extractable into chloroform and shows absorption maximum at 407-418 nm with a molar absorptivity of 2.79 x 10(4) L mol(-1) cm(-1) and Sandell's sensitivity equal to 0.0033 microg Nb(V) cm(-2), respectively. Beer's law holds good in the range 0-1.2 microg Nb ml(-1), with a standard deviation of +/- 0.0015 absorbance units. The method is free from the interference of a large number of elements and handles satisfactorily the analysis of various samples of varying complexity.  相似文献   

16.
Garcia IL  Aviles JM  Cordoba MH 《Talanta》1986,33(5):411-414
Sensitive spectrophotometric and spectrofluorimetric procedures for the determination of palladium have been developed, based on solvent-extraction of the ion-pair formed between Rhodamine B and the anionic complex of Pd(II) with thiocyanate. With an organic to aqueous phase-volume ratio of 1:5, the molar absorptivity is 9.0 x 10(4) l.mole(-1).cm(-1) and the absorbance of the reagent blank is 0.026. Spectrophotometrically, palladium can be determined in the range 0.1-8.8 mug. Spectrofluorimetrically, it can be determined over the range 0.04-1.5 mug. The spectrophotometric procedure has been applied to the determination of palladium in dental alloys, organopalladium compounds and hydrogenation catalysts.  相似文献   

17.
Benzildithiosemicarbazone (BDTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of copper(II). BDTSC reacts with copper(II) in the pH range 1.0-7.0 to form a yellowish complex. Beer's law is obeyed in the concentration range 0.5-0.4 microg cm(-3). The yellowish Cu(II)-BDTSC complex in chloroform shows a maximum absorbance at 380 nm, with molar absorptivity and Sandell's sensitivity values of 1.63 x 10(4) dm3 mol(-1) cm(-1) and 0.00389 microg cm(-2), respectively. A repetition of the method is checked by finding the relative standard deviation (RSD) (n = 10), which is 0.6%. The composition of the Cu(II)-BDTSC complex is established as 1:1 by slope analysis, molar ratio and Asmus' methods. An excellent linearity with a correlation coefficient value of 0.98 is obtained for the Cu(II)-BDTSC complex. The instability constant of the complex calculated from Edmond and Birnbaum's method is 7.70 x 10(-4) and that of Asmus' method is 7.66 x 10(-4), at room temperature. The method is successfully employed for the determination copper(II) in pharmaceutical and environmental samples. The reliability of the method is assured by analyzing the standard alloys (BCS 5g, 10g, 19e, 78, 32a, 207 and 179) and by inter-comparison of experimental values, using an atomic absorption spectrometer.  相似文献   

18.
The spectrophotometric determination of Cu(II) with an anthraquinone derivative (Alizarin Red S) has been investigated. The experimental conditions, such as the pH of the sample and concentration of ligand, were optimized. This method is simple and sensitive for determination of Cu(II) ion. The interfering effects of diverse ions were investigated. Copper ion was determined by measuring the absorbance of the Cu(II)-ARS complex at 510 nm. Beer's law was obeyed over the concentration range of 0.011 - 0.320 mmol dm(-3) and the detection limit (S/N = 3) was 0.038 microg cm(-3). The relative standard deviation at 20 microg cm(-3) was 1.02% (n = 5). The method was applied for real samples.  相似文献   

19.
Carvalho MS  Fraga IC  Neto KC  Silva Filho EQ 《Talanta》1996,43(10):1675-1680
The present work describes a selective, rapid and economical method for the determination of cobalt using the 2-(2-benzothiazolylazo)-p-cresol (BTAC) as a spectrophotometric reagent associated with a solid extraction on polyurethane foam. The BTAC reacts with Co(II) in the presence of Triton-X100 surfactant forming a green complex with maximum absorption at 615 nm. The reaction is used for cobalt determination within a pH range of 6.50-7.50, with an apparent molar absorptivity of 1.62 x 10(4) L mol(-1) cm(-1). Beer's Law is obeyed for a concentration of at least 1.60 microg ml(-1). A selective procedure is proposed for cobalt determination in the presence of Fe(II), Hg(II), Zn(II) and Cu(II) up to milligram levels using masking agents. Polyurethane foam is used for the preconcentration and separation of cobalt from thiocyanate media and this procedure is applied to its determination in nickel salts and steel alloys.  相似文献   

20.
A procedure is described for the extractive photometric determination of palladium(II) with o-mercaptobenzoic acid. The reagent forms a yellow complex having maximum absorption at 365–370 mμ. The complex is quantitatively extractable with chloroform in the presence of pyridine at pH 5.2–7.2. The color develops immediately at room temperature and is very stable. Beer's law conforms over the range of 0.37–5.86 ppm of palladium. Most of the cations do not interfere in the presence of ascorbic acid and EDTA. Gold and silver are effectively masked with excess of thiocyanate prior to the addition of ascorbic acid and EDTA. Many common anions do not interfere. The molar absorptivity and Sandell sensitivity are 16.7 × 103 and 0.0065 μg/cm2. The reagent forms a 2:1 complex with palladium. The proposed method is simple, rapid, and selective for the determination of palladium(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号