首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is proved that if an entire function f: ? → ? satisfies an equation of the form α 1(x)β 1(y) + α 2(x)β 2(y) + α 3(x)β 3(y), x,y ∈ C, for some α j , β j : ? → ? and there exist no \({\widetilde \alpha _j}\) and ?\({\widetilde \beta _j}\) for which \(f\left( {x + y} \right)f\left( {x - y} \right) = {\overline \alpha _1}\left( x \right){\widetilde \beta _1}\left( y \right) + {\overline \alpha _2}\left( x \right){\widetilde \beta _2}\left( y \right)\), then f(z) = exp(Az 2 + Bz + C) ? σ Γ(z - z 1) ? σ Γ(z - z 2), where Γ is a lattice in ?; σ Γ is the Weierstrass sigma-function associated with Γ; A,B,C, z 1, z 2 ∈ ?; and \({z_1} - {z_2} \notin \left( {\frac{1}{2}\Gamma } \right)\backslash \Gamma \).  相似文献   

2.
Let g be a linear combination with quasipolynomial coefficients of shifts of the Jacobi theta function and its derivatives in the argument. All entire functions f: ? → ? satisfying f(x+y)g(x?y) = α1(x)β1(y)+· · ·+αr(x)βr(y) for some r ∈ ? and αj, βj: ? → ? are described.  相似文献   

3.
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.  相似文献   

4.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

5.
We consider the Cauchy problem for the nonlinear differential equation
$$\varepsilon \frac{{du}}{{dx}} = f(x,u),u(0,\varepsilon ) = R_0 ,$$
where ? > 0 is a small parameter, f(x, u) ∈ C ([0, d] × ?), R 0 > 0, and the following conditions are satisfied: f(x, u) = x ? u p + O(x 2 + |xu| + |u|p+1) as x, u → 0, where p ∈ ? \ {1} f(x, 0) > 0 for x > 0; f u 2(x, u) < 0 for (x, u) ∈ [0, d] × (0, + ∞); Σ 0 +∞ f u 2(x, u) du = ?∞. We construct three asymptotic expansions (external, internal, and intermediate) and prove that the matched asymptotic expansion approximates the solution uniformly on the entire interval [0, d].
  相似文献   

6.
Let Ω = {t0, t1, …, tN} and ΩN = {x0, x1, …, xN–1}, where xj = (tj + tj + 1)/2, j = 0, 1, …, N–1 be arbitrary systems of distinct points of the segment [–1, 1]. For each function f(x) continuous on the segment [–1, 1], we construct discrete Fourier sums Sn, N( f, x) with respect to the system of polynomials {p?k,N(x)} k=0 N–1 , forming an orthonormal system on nonuniform point systems ΩN consisting of finite number N of points from the segment [–1, 1] with weight Δtj = tj + 1tj. We find the growth order for the Lebesgue function Ln,N (x) of the considered partial discrete Fourier sums Sn,N ( f, x) as n = O(δ N ?2/7 ), δN = max0≤ jN?1 Δtj More exactly, we have a two-sided pointwise estimate for the Lebesgue function Ln, N(x), depending on n and the position of the point x from [–1, 1].  相似文献   

7.
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

8.
Let a sequence of d-dimensional vectors n k = (n k 1 , n k 2 ,..., n k d ) with positive integer coordinates satisfy the condition n k j = α j m k +O(1), k ∈ ?, 1 ≤ jd, where α 1 > 0,..., α d > 0 and {m k } k=1 is an increasing sequence of positive integers. Under some conditions on a function φ: [0,+∞) → [0,+∞), it is proved that, if the sequence of Fourier sums \({S_{{m_k}}}\) (g, x) converges almost everywhere for any function gφ(L)([0, 2π)), then, for any d ∈ ? and fφ(L)(ln+ L) d?1([0, 2π) d ), the sequence \({S_{{n_k}}}\) (f, x) of rectangular partial sums of the multiple trigonometric Fourier series of the function f and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.  相似文献   

9.
We consider quadratic functions f that satisfy the additional equation y2 f(x) =  x2 f(y) for the pairs \({ (x,y) \in \mathbb{R}^2}\) that fulfill the condition P(x, y) =  0 for some fixed polynomial P of two variables. If P(x, y) =  axbyc with \({ a , b , c \in \mathbb{R}}\) and \({(a^2 + b^2)c \neq 0}\) or P(x,y) =  x n ? y with a natural number \({n \geq 2}\), we prove that f(x) =  f(1) x2 for all \({x \in \mathbb{R}}\). Some related problems, admitting quadratic functions generated by derivations, are considered as well.  相似文献   

10.
Let R+:= [0, +∞), and let the matrix functions P, Q, and R of order n, n ∈ N, defined on the semiaxis R+ be such that P(x) is a nondegenerate matrix, P(x) and Q(x) are Hermitian matrices for x ∈ R+ and the elements of the matrix functions P?1, Q, and R are measurable on R+ and summable on each of its closed finite subintervals. We study the operators generated in the space Ln2(R+) by formal expressions of the form l[f] = ?(P(f' ? Rf))' ? R*P(f' ? Rf) + Qf and, as a particular case, operators generated by expressions of the form l[f] = ?(P0f')' + i((Q0f)' + Q0f') + P'1f, where everywhere the derivatives are understood in the sense of distributions and P0, Q0, and P1 are Hermitianmatrix functions of order n with Lebesgue measurable elements such that P0?1 exists and ∥P0∥, ∥P0?1∥, ∥P0?1∥∥P12, ∥P0?1∥∥Q02Lloc1(R+). Themain goal in this paper is to study of the deficiency index of the minimal operator L0 generated by expression l[f] in Ln2(R+) in terms of the matrix functions P, Q, and R (P0, Q0, and P1). The obtained results are applied to differential operators generated by expressions of the form \(l[f] = - f'' + \sum\limits_{k = 1}^{ + \infty } {{H_k}} \delta \left( {x - {x_k}} \right)f\), where xk, k = 1, 2,..., is an increasing sequence of positive numbers, with limk→+∞xk = +∞, Hk is a number Hermitian matrix of order n, and δ(x) is the Dirac δ-function.  相似文献   

11.
For ?1≤B<A≤1, let \(\mathcal {S}^{*}(A,B)\) denote the class of normalized analytic functions \(f(z)= z+{\sum }_{n=2}^{\infty }a_{n} z^{n}\) in |z|<1 which satisfy the subordination relation z f (z)/f(z)?(1 + A z)/(1 + B z) and Σ?(A,B) be the corresponding class of meromorphic functions in |z|>1. For \(f\in \mathcal {S}^{*}(A,B)\) and λ>0, we shall estimate the absolute value of the Taylor coefficients a n (?λ,f) of the analytic function (f(z)/z)?λ . Using this we shall determine the coefficient estimate for inverses of functions in the classes \(\mathcal {S}^{*}(A,B)\) and Σ?(A,B).  相似文献   

12.
Let \(\Omega \subset {{\Bbb C}^n}\) be a bounded, simply connected ?-convex domain. Let α ∈ ?+n and let f be a function on Ω which is separately \({C^{2{\alpha _j} - 1}}\)-smooth with respect to zj (by which we mean jointly \({C^{2{\alpha _j} - 1}}\)-smooth with respect to Rezj, Imzj). If f is α-analytic on Ω\f?1(0), then f is α-analytic on Ω. The result is well-known for the case αi = 1, 1 ? i ? n, even when f a priori is only known to be continuous.  相似文献   

13.
The paper discusses the asymptotic depth of a reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The reversible circuit depth function D(n, q) is introduced for a circuit implementing a mapping f: Z2n → Z2n as a function of n and the number q of additional inputs. It is proved that for the case of implementation of a permutation from A(Z2n) with a reversible circuit having no additional inputs the depth is bounded as D(n, 0) ? 2n/(3log2n). It is also proved that for the case of transformation f: Z2n → Z2n with a reversible circuit having q0 ~ 2n additional inputs the depth is bounded as D(n,q0) ? 3n.  相似文献   

14.
Given any nonzero entire function g: ? → ?, the complex linear space F(g) consists of all entire functions f decomposable as f(z + w)g(z - w)=φ1(z1(w)+???+ φn(zn(w) for some φ1, ψ1, …, φn, ψn: ? → ?. The rank of f with respect to g is defined as the minimum integer n for which such a decomposition is possible. It is proved that if g is an odd function, then the rank any function in F(g) is even.  相似文献   

15.
We consider the partial theta function θ(q, x) := ∑j=0qj(j+1)/2xj, where x ∈ ? is a variable and q ∈ ?, 0 < |q| < 1, is a parameter. We show that, for any fixed q, if ζ is a multiple zero of the function θ(q, · ), then |ζ| ≤ 811.  相似文献   

16.
We investigate equations of the form D t u = Δu + ξ? u for an unknown function u(t, x), t ∈ ?, xX, where D t u = a 0(u, t) + Σ k=1 r a k (t, u)? t k u, Δ is the Laplace-Beltrami operator on a Riemannian manifold X, and ξ is a smooth vector field on X. More exactly, we study morphisms from this equation within the category PDE of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form—the so-called geometric morphisms, which are given by maps of X to other smooth manifolds (of the same or smaller dimension). It is shown that a map f: XY defines a morphism from the equation D t u = Δu + ξ? u if and only if, for some vector field Ξ and a metric on Y, the equality (Δ + ξ?)f*v = f*(Δ + Ξ?)v holds for any smooth function v: Y → ?. In this case, the quotient equation is D t v = Δv + Ξ?v for an unknown function v(t, y), yY. It is also shown that, if a map f: XY is a locally trivial bundle, then f defines a morphism from the equation D t u = Δu if and only if fibers of f are parallel and, for any path γ on Y, the expansion factor of a fiber translated along the horizontal lift γ to X depends on γ only.  相似文献   

17.
Let {p n (t)} n=0 t8 be a system of algebraic polynomials orthonormal on the segment [?1, 1] with a weight p(t); let {x n,ν (p) } ν=1 n be zeros of a polynomial p n (t) (x x,ν (p) = cosθ n,ν (p) ; 0 < θ n,1 (p) < θ n,2 (p) < ... < θ n,n (p) < π). It is known that, for a wide class of weights p(t) containing the Jacobi weight, the quantities θ n,1 (p) and 1 ? x n,1 (p) coincide in order with n ?1 and n ?2, respectively. In the present paper, we prove that, if the weight p(t) has the form p(t) = 4(1 ? t 2)?1{ln2[(1 + t)/(1 ? t)] + π 2}?1, then the following asymptotic formulas are valid as n → ∞:
$$\theta _{n,1}^{(p)} = \frac{{\sqrt 2 }}{{n\sqrt {\ln (n + 1)} }}\left[ {1 + {\rm O}\left( {\frac{1}{{\ln (n + 1)}}} \right)} \right],x_{n,1}^{(p)} = 1 - \left( {\frac{1}{{n^2 \ln (n + 1)}}} \right) + O\left( {\frac{1}{{n^2 \ln ^2 (n + 1)}}} \right).$$
  相似文献   

18.
In this note, we study the admissible meromorphic solutions for algebraic differential equation fnf' + Pn?1(f) = R(z)eα(z), where Pn?1(f) is a differential polynomial in f of degree ≤ n ? 1 with small function coefficients, R is a non-vanishing small function of f, and α is an entire function. We show that this equation does not possess any meromorphic solution f(z) satisfying N(r, f) = S(r, f) unless Pn?1(f) ≡ 0. Using this result, we generalize a well-known result by Hayman.  相似文献   

19.
Let J be the Lévy density of a symmetric Lévy process in \(\mathbb {R}^{d}\) with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator
$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$
where κ(x, z) is a Borel function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) satisfying 0 < κ 0κ(x, z) ≤ κ 1, κ(x, z) = κ(x,?z) and |κ(x, z) ? κ(y, z)|≤ κ 2|x ? y| β for some β ∈ (0, 1]. We construct the heat kernel p κ (t, x, y) of \(\mathcal {L}^{\kappa }\), establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p κ .
  相似文献   

20.
We obtain asymptotic formulas uniform with respect to the index p > 0 for the Hankel functions H p (j) (z) (j = 1, 2) for large |z| in the complex domain. These formulas generalize those known for the real argument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号