首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crack in a ferroelectric ceramic with perfect saturation under electric loading is analyzed. The boundary of the electric displacement saturation zone ahead of the crack tip is assumed to be ellipse in shape. The shape and size of ferroelectric domain switching zone near a crack tip is determined based on the nonlinear electric theory. The stress intensity factor induced by ferroelectric domain switching under small-scale conditions is numerically obtained as a function of the electric saturation zone parameter and the ratio of the coercive electric field to the yield electric field. It is found that the stress intensity factor increases as the ratio of the semi-axes of the saturation ellipse increases.  相似文献   

2.
Reliability calls for a better understanding of the failure of ferroelectric ceramics. The fracture and fatigue of ferroelectric ceramics under an electric field or a combined electric and mechanical loading are investigated. The small-scale domain-switching model is modified to analyze failure due to fracture and fatigue. Effects of anisotropy and electromechanical load coupling are taken into account. Analytical expressions are obtained for domain-switching regions near the crack tip such that of 90° domain switching can be distinguished from 180° domain switching in addition to different initial poling directions. The crack tip stress intensity variation of ferroelectric ceramics due to the domain switching is analyzed. A positive electric field tends to enhance the propagation of an insulating crack perpendicular to the poling direction, while a negative field impedes it. Fatigue crack growth under various coupling loads and effects of the stress field and electric field on near field stress intensity variation are analyzed. Predicted crack growth versus cyclic electric field agrees well with experiment.  相似文献   

3.
Domain polarization switch near the tip of a crack or an electrode plays a critical role in the fracture or toughening of ferroelectric ceramics. The intensive electric field near a crack tip stimulates local domain switching. Experiment indicates that the domain band structure in front of an indentation crack under lateral electric loading is unconventional, attributed to the highly localizing crack tip electric field. The partially switched ferroelectric grain resembles a banded Eshelby inclusion embedded in a polycrystalline ferroelectric matrix. The domain wall energy for unconventional domain structures is estimated via arrays of misfit dislocations. Mesomechanics analysis quantifies the unconventional domain band structures. The predicted parameters include the volume fraction, the thickness, and the orientation of switched domain bands.  相似文献   

4.
This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switch-ing by an electric field. The electric loading changes the size of the asymmetric switching zone. Employing the weight function method, we obtain the electrically-dependent switch toughening for stationary and quasi-static growing interfacial cracks, respectively. Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites. Numer-ical results are presented on the electric field tuning of the critical applied stress intensity factor. The research provides ways to optimize fracture properties of ferroelectric compos-ites by altering the electric field.  相似文献   

5.
This paper is concerned with a macroscopic constitutive law for domain switching effects, which occur in ferroelectric ceramics. The three-dimensional model is thermodynamically consistent and is determined by two scalar valued functions: the Helmholtz free energy and a switching surface. In a kinematic hardening process the movement of the center of the switching surface is controlled by internal variables. In common usage, the remanent polarization and the irreversible strain are employed as internal variables. The novel aspect of the present work is to introduce an irreversible electric field, which serves instead of the remanent polarization as internal variable. The irreversible electric field has only theoretical meaning, but it makes the formulation very suitable for a finite element implementation, where displacements and the electric potential are the nodal degrees of freedom. The paper presents an appropriate implementation into a hexahedral finite brick element. The uni-axial constitutive model successfully reproduces the ferroelastic and the ferroelectric hysteresis as well as the butterfly hysteresis for ferroelectric ceramics. Furthermore it accounts for the mechanical depolarization effect, which occurs if the polarized ferroelectric ceramic is subjected to a compression stress.  相似文献   

6.
The asymptotic problem of a semi-infinite crack perpendicular to the poling direction in a ferroelectric ceramic subjected to combined electric and mechanical loading is analyzed to investigate effect of electric fields on fracture behavior. Electromechanical coupling induced by the piezoelectric effect is neglected in this paper. The shape and size of the switching zone is shown to depend strongly on the relative magnitude between the applied electric field and stress field as well as on the ratio of the coercive electric field to the yield electric field. A universal relation between the crack tip stress intensity factor and the applied intensity factors of stress and electric field under small-scale conditions is obtained from the solution of the switching zone. It is found that the ratio of the coercive electric field to the yield electric field plays a significant role in determining the enhancement or reduction of the crack tip stress intensity factor. The fracture toughness variation of ferroelectrics under combined electric and mechanical loading is also discussed.  相似文献   

7.
An isoparametric 3D electromechanical hexahedral finite element integrating a 3D phenomenological ferroelectric and ferroelastic constitutive law for domain switching effects is proposed. The model presents two internal variables which are the ferroelectric polarization (related to the electric field) and the ferroelastic strain (related to the mechanical stress). An implicit integration technique of the constitutive equations based on the return-mapping algorithm is developed. The mechanical strain tensor and the electric field vector are expressed in a curvilinear coordinate system in order to handle the transverse isotropy behavior of ferroelectric ceramics. The hexahedral finite element is implemented into the commercial finite element code Abaqus® via the subroutine user element. Some linear (piezoelectric) and non linear (ferroelectric and ferroelastic) benchmarks are considered as validation tests.  相似文献   

8.
In the present study, an I-integral method is established for solving the crack-tip intensity factors of ferroelectric single-crystals. The I-integral combined with the phase field model is successfully used to investigate crack-tip intensity factor variations due to domain switching in ferroelectricity subjected to electromechanical loadings, which exhibits several advantages over previous methods based on small-scale switching. First, the shape of the switching zone around a crack tip is predicted by the time-dependent Ginzburg–Landau equation, which does not require preset energy-based switching criterion. Second, the I-integral can directly solve the crack-tip intensity factors and decouple the crack-tip intensity factors of different modes based on superimposing an auxiliary state onto an actual state. Third, the I-integral is area-independent, namely, the I-integral is not affected by the integral area size, the polarization distributions, or domain walls. This makes the I-integral applicable to large-scale domain switching. To this end, the electro-elastic field intensity factors of an impermeable crack in PbTiO3 ferroelectric single crystals are evaluated under electrical, mechanical, and combined loading. The intensity factors obtained by the I-integral agree well with those obtained by the extrapolation technique. From numerical results, the following conclusions can be drawn with respect to fracture behavior of ferroelectrics under large-scale switching. Under displacement controlled mechanical loading, the stress intensity factors (SIFs) decrease monotonically due to the domain switching process, which means a crack tip shielding or effective switching-induced toughening occurs. If an external electric field is applied, the electric displacement intensity factor (EDIF) increases in all cases, i.e., the formed domain patterns enhance the electric crack tip loading. The energy release rate, expressed by the crack-tip J-integral, is reduced by the domain switching in all examples, which underlines the switching-induced-toughening effect. In contrast, under stress controlled load, the SIF evolves due to large-scale switching to a stable value, which is higher than the non-switching initial value, i.e., fracture is promoted in this case.  相似文献   

9.
IntroductionRecently ,theferroelectricceramicshassuchexcellentcharacteristicsofpiezoelectricityandpyroelectricityetc .thatitbecomesoneofthemostimportantfunctionalmaterials.Forinstance ,thewidelyappliedsensors,transducersandactuatorsetc .aremadeoftheferroe…  相似文献   

10.
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u i , electric displacement D i and volume fraction ρ I of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction ρ I of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch. The project supported by the National Natural Science Foundation of China (10572138).  相似文献   

11.
This paper discusses an in situ observation of fracture behavior around a crack tip in ferroelectric ceramics under combined electromechanical loading by use of a moiré interferometry technique. The deformation field induced by the electric field and the stress concentration near the crack tip in three-points bending experiments was measured. By analysis of the moiré images it is found that under a constant mechanical load, the electric field almost has no effect on the crack extension in the case that the directions of the poling, electric field and crack extension are perpendicular to each other. When the poling direction is parallel to the crack extension direction and perpendicular to the electric field, the strain decreases faster than that calculated by FEM with and without electrical loading as one goes away from the crack tip. In addition, as the electric field intensity increases, the strain near the crack tip increases, and the strain concentration becomes more significant. The project supported by the National Natural Science Foundation of China (10132010, 10025209, 10232023)  相似文献   

12.
Ferroelectric solids, especially ferroelectric perovskites, are widely used as sensors, actuators, filters, memory devices, and optical components. While these have traditionally been treated as insulators, they are in reality wide-band-gap semiconductors. This semiconducting behavior affects the microstructures or domain patterns of the ferroelectric material and the interaction of ferroelectrics with electrodes, and is affected significantly by defects and dopants. In this paper, we develop a continuum theory of deformable, semiconducting ferroelectrics. A key idea is to introduce space charges and dopant density as field (state) variables in addition to polarization and deformation. We demonstrate the theory by studying oxygen vacancies in barium titanate. We find the formation of depletion layers, regions of depleted electrons, and a large electric field at the ferroelectric–electrode boundary. We also find the formation of a charge double layer and a large electric field across 90° domain walls but not across 180° domain walls. We show that these internal electric fields can give rise to a redistribution or forced diffusion of oxygen vacancies, which provides a mechanism for aging of ferroelectric materials.  相似文献   

13.
铁电材料在力、电载荷作用尤其是循环载荷作用下有明显的热效应.热效应会在铁电材料中引起应力场和电场.另外,在外载作用下铁电材料发生约束畴变时也会产生附加的应力场,这些附加的应力场和电场都会对铁电材料的畴变产生影响.而且在循环载荷作用的情况下,这种影响会逐渐累积.但在以往的研究中,很少涉及这种影响.该文就循环电载下热效应引起的力、电场和约束畴变时产生的附加应力场对铁电材料畴变的影响进行了初步研究.  相似文献   

14.
The effects of applied voltage on the electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators were examined in a combined experimental and numerical investigation. Experiments were performed to measure the strain near internal and surface electrodes at various electrical loading conditions. The finite element method was also used to solve the coupled electro-elastic boundary value problem. The strain, stress and electric displacement concentrations were calculated and a non-linear behavior induced by localized polarization switching was discussed. A comparison of strain concentration was made between experiment and simulation.  相似文献   

15.
Investigations on the interconnection between the polarization rotation and crack propagation are performed for [110]-oriented 74Pb(Mg1/3Nb2/3)O3-26PbTiO3 relaxor ferroelectric single crystal under electric loadings along [001] direction. The crystal is of predominantly monoclinic MA phase with scatter distributed rhombohedral (R) phase under a moderate poling field of 900 V/mm in [001] direction. With magnitude of 800 V/mm, a through thickness crack is initiated near the electrode by electric cycling. Static electric loadings is then imposed to the single crystal. As the applied static electric field increases, domain switching in the monoclinic MA phase and phase transition from MA to R phase occur near the crack. The results indicate that the crack features a conducting one. Whether domain switching or phase transition occurs depends on the intensity of the electric field component that is perpendicular to the applied electric field.  相似文献   

16.
In this paper, a general form for multi-axial constitutive laws for ferroelectric ceramics is constructed. The foundation of the theory is an assumed form for the Helmholtz free energy of the material. Switching surfaces and associated flow rules are postulated in a modified stress and electric field space such that a positive dissipation rate during switching is guaranteed. The resulting tangent moduli relating increments of stress and electric field to increments of strain and electric displacement are symmetric since changes in the linear elastic, dielectric and piezoelectric properties of the material are included in the switching surface. Finally, parameters of the model are determined for two uncoupled cases, namely non-remanent straining ferroelectrics and purely ferroelastic switching, and then for the fully coupled ferroelectric case.  相似文献   

17.
基于有限元软件ANSYS数值模拟,计算了激光作用下的压电薄膜表面贯穿裂纹外场应力强度因子和电位移强度因子,并且研究了90°畴变所诱致的畴变增韧行为。首先,求解无裂纹压电薄膜在激光作用下的热-力-电响应,将求得的应力和电位移场反向作用于裂纹面,求解裂纹尖端处的外场应力和电位移强度因子,然后基于小范围畴变理论求解了90°畴变所致的屏蔽应力强度因子。讨论了薄膜表面裂纹的外场应力强度因子、电位移强度因子及屏蔽应力强度因子随激光作用时间和裂纹位置的变化关系,从而预测压电薄膜体系在加热工作状况下的裂纹扩展和断裂行为。  相似文献   

18.
Piezoelectric systems like multilayer actuators are susceptible to damage by crack propagation induced by strain incompatibilities. These can arise under electric fields for example between the electroded and external regions. Such incompatibilities have been realised in thin rectangular model specimens from PZT-piezoelectric ceramics with top and bottom electrodes only close to one edge. Under an electric field, controlled crack propagation has been observed in situ in an optical microscope. The crack paths are reproducible with very high accuracy. Small electrode widths lead to straight cracks with two transitions between stable and unstable crack growth regions, while large electrode widths result in curved cracks with four transitions. Fracture mechanics analysis is able to explain the different crack paths. An iteration method is developed to simulate the curved crack propagation also for strong curvature of the crack paths using the finite element method. The computed crack contours exhibit excellent quantitative agreement with the experiment with respect to their shape, the stages of stable and unstable crack propagation and the transitions between them. Finally, also the crack length as a function of the electric field can be predicted.  相似文献   

19.
In this paper, the effect of electric boundary conditions on Mode I crack propagation in ferroelectric ceramics is studied by using both linear and nonlinear piezoelectric fracture mechanics. In linear analysis, impermeable cracks under open circuit and short circuit are analyzed using the Stroh formalism and a rescaling method. It is shown that the energy release rate in short circuit is larger than that in open circuit. In nonlinear analysis, permeable crack conditions are used and the nonlinear effect of domain switching near a crack tip is considered using an energy-based switching criterion proposed by Hwang et al.(Acta Metal. Mater.,1995). In open circuit, a large depolarization field induced by domain switching makes switching much more diffcult than that in short circuit. Analysis shows that the energy release rate in short circuit is still larger than that in open circuit, and is also larger than the linear result. Consequently,whether using linear or nonlinear fracture analysis, a crack is found easier to propagate in short circuit than in open circuit, which is consistent with the experimental observations of Kounga Njiwa et al.(Eng. Fract. Mech., 2006).  相似文献   

20.
Single crystal relaxor ferroelectric materials exhibit extraordinary electromechanical properties. They are being applied in high performance sensors, actuators, and transducers. Field induced polarization switching and phase transitions of these crystals lead to complex nonlinear behavior. In recent years experimental investigations have been conducted to characterize the polarization switching and phase transition behavior as a function of crystallographic orientation, temperature, electric field, and stress. The results give insight into the mechanism underlying the observed large field hysteretic behavior. This review article describes the observed behavior and presents results of multiscale modeling that predicts the macroscopic behavior from the single domain single crystal behavior and evolution of crystal variants at the microscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号