首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have recently proposed a protocol for retrieving multidimensional magnetic resonance images within a single scan, based on a spatial encoding of the spin interactions. This methodology relies on progressively dephasing spin coherences throughout a sample; for instance, by sweeping a radiofrequency pulse in the presence of a magnetic field gradient. When spins are suitably refocused by a second (acquisition) field gradient, this yields a time-domain signal reflecting in its magnitude the spatial distribution of spins throughout the sample. It is hereby shown that whereas the absolute value of the resulting signals conveys such imaging information, the hitherto unutilized phase modulation of the signal encodes the chemical shift offsets of the present speciae. Spectroscopically-resolved multidimensional images can thereby be retrieved in this fashion at no additional expense in either experimental complexity, sensitivity or acquisition time--simply by performing an additional analysis of the collected data. The resulting approach to single-scan spectroscopic imaging can also incorporate "RF shimming" compensating abilities, capable of providing high-resolution spectral and high-definition imaging data even under the presence of substantial magnetic field inhomogeneities. The principles of these methodologies as applied to spectroscopic imaging are briefly reviewed and compared against the background of traditional Fourier-based single-scan spectroscopic imaging protocols. Demonstrations of these new multidimensional spectroscopic MRI experiments on simple phantoms are also given.  相似文献   

2.
二维核磁共振(2D NMR)的提出和发展,为NMR技术的研究和应用提供了广阔的空间. 然而当样品或磁场本身不均匀时,高分辨的2D NMR谱难以获得. 此外,常规2D NMR实验通常需要长的采样时间. 空间编码超快速采样方法利用空间编码技术,只需单次扫描即可获得2D甚至多维NMR谱,极大地缩短了采样时间. 目前相位补偿、相干转移和分子间多量子相干等技术与空间编码技术相结合,已成功实现不均匀场下超快速获得高分辨NMR谱. 该文对不均匀场下空间编码超快速NMR方法进行了介绍,对其未来发展进行了展望.  相似文献   

3.
An approach that enables the acquisition of multidimensional NMR spectra within a single scan has been recently proposed and demonstrated. The present paper explores the applicability of such ultrafast acquisition schemes toward the collection of two-dimensional magnetic resonance imaging (2D MRI) data. It is shown that ideas enabling the application of these spatially encoded schemes within a spectroscopic setting, can be extended in a straightforward manner to pure imaging. Furthermore, the reliance of the original scheme on a spatial encoding and subsequent decoding of the evolution frequencies endows imaging applications with a greater simplicity and flexibility than their spectroscopic counterparts. The new methodology also offers the possibility of implementing the single-scan acquisition of 2D MRI images using sinusoidal gradients, without having to resort to subsequent interpolation procedures or non-linear sampling of the data. Theoretical derivations on the operational principles and imaging characteristics of a number of sequences based on these ideas are derived, and experimentally validated with a series of 2D MRI results collected on a variety of model phantom samples.  相似文献   

4.
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting “hybrid” imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T2* effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T2 contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.  相似文献   

5.
We have recently demonstrated that the spatial encoding of internal nuclear magnetic resonance (NMR) spin interactions can be exploited to collect multidimensional NMR spectra within a single scan. Such experiments rely on an inhomogeneous spatial excitation of the spins throughout the sample, and lead to indirect-domain peaks via a constructive interference among the spatially resolved spin-packets that are thus created. The shape of the resulting indirect-domain echo peaks approaches a Sinc function when the chemical's distribution is uniform, but will depart from this function otherwise. It is hereby shown that a Fourier analysis of either the diagonal- or the cross-peaks resolved in these single-scan two-dimensional (2D) NMR experiments can in fact provide a weighted spatial distribution of the analyte originating such peak, thus opening up the possibility of completing spatially resolved multidimensional NMR measurements within a fraction of a second. Principles of this new mode of analysis are discussed, and examples where the potential of spatially resolved ultrafast 2D NMR spectroscopy is brought to bear are presented. Potential extensions of this approach to higher dimensions are also briefly addressed.  相似文献   

6.
We have recently proposed a protocol for retrieving nuclear magnetic resonance (NMR) spectra based on a spatially-dependent encoding of the MR interactions. It has also been shown that the spatial selectivity with which spins are manipulated during such encoding opens up new avenues towards the removal of magnetic field inhomogeneities; not by demanding extreme Bo field uniformities, but rather by compensating for the dephasing effects introduced by the field distribution at a radiofrequency excitation and/or refocusing level. The present study discusses in further detail a number of strategies deriving from this principle, geared at acquiring both uni- as well as multi-dimensional spectroscopic data at high resolution conditions. Different variants are presented, tailored according to the relative sensitivity and chemical nature of the spin system being explored. In particular a simple multi-scan experiment is discussed capable of affording substantial improvements in the spectral resolution, at nearly no sensitivity or scaling penalties. This new compensation scheme is therefore well-suited for the collection of high-resolution data in low-field systems possessing limited signal-to-noise ratios, where magnetic field heterogeneities might present a serious obstacle. Potential areas of applications of these techniques include high-field in vivo NMR studies in regions near tissue/air interfaces, clinical low field MR spectroscopy on relatively large off-center volumes difficult to shim, and ex situ NMR. The principles of the different compensation methods are reviewed and experimentally demonstrated for one-dimensional inhomogeneities; further improvements and extensions are briefly discussed.  相似文献   

7.
A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found that when dealing with 2D NMR experiments involving a t1 amplitude-modulation of the spin evolution, such continuous encoding scheme presents a number of advantages over alternatives employing discrete excitation pulses. From an experimental standpoint this is mainly reflected by the use of a single pair of bipolar gradients during the course of the indirect-domain encoding, as opposed to the numerous (and more intense) gradient echoes required so far. In terms of the spectral outcome, main advantages of the continuous spatial encoding scheme are the avoidance of "ghost peaks" and of "enveloping effects" associated to the discrete excitation mode. The principles underlying this new spatial encoding protocol are derived, and its applicability is demonstrated with homo- and heteronuclear 2D ultrafast NMR applications on small molecule and on protein samples.  相似文献   

8.
Spatial encoding is a particular kind of spin manipulation that enables the acquisition of multidimensional NMR spectra within a single scan. This encoding has been shown to possess a general applicability and to enable the completion of arbitrary nD NMR acquisitions within a single transient. The present study explores its potential towards the acquisition of 2D DOSY spectra, where the indirect dimension is meant to encode molecular displacements rather than a coherent spin evolution. We find that in its simplest form this extension shows similarities with methods that have been recently discussed for the single-scan acquisition of this kind of traces; still, a number of advantageous features are also evidenced by the “ultrafast” modality hereby introduced. The principles underlying the operation of this new single-scan 2D DOSY approach are discussed, its use is illustrated with a variety of sequences and of samples, the limitations of this new experiment are noted, and potential extensions of the methodology are mentioned.  相似文献   

9.
Ultrafast 2D NMR replaces the time-domain parametrization usually employed to monitor the indirect-domain spin evolution, with an equivalent encoding along a spatial geometry. When coupled to a gradient-assisted decoding during the acquisition, this enables the collection of complete 2D spectra within a single transient. We have presented elsewhere two strategies for carrying out the spatial encoding underlying ultrafast NMR: a discrete excitation protocol capable of imparting a phase-modulated encoding of the interactions, and a continuous protocol yielding amplitude-modulated signals. The former is general but has associated with it a number of practical complications; the latter is easier to implement but unsuitable for certain 2D NMR acquisitions. The present communication discusses a new protocol that incorporates attractive attributes from both alternatives, imparting a continuous spatial encoding of the interactions yet yielding a phase modulation of the signal. This in turn enables a number of basic experiments that have shown particularly useful in the context of in vivo 2D NMR, including 2D J-resolved and 2D H,H-COSY spectroscopies. It also provides a route to achieving sensitivity-enhanced acquisitions for other homonuclear correlation experiments, such as ultrafast 2D TOCSY. The main features underlying this new spatial encoding protocol are derived, and its potential demonstrated with a series of phase-modulated homonuclear single-scan 2D NMR examples.  相似文献   

10.
High-resolution imaging techniques using noninvasive modalities such as magnetic resonance (MR) imaging are being pursued as in vivo cancer screening techniques in an attempt to eliminate the invasive nature of surgical biopsy. When acquiring high-resolution MR images for tissue screening, image fields of view have in the past been limited by the matrix sizes available in conventional MR scanners. We present here a technique that uses aliasing to produce high resolution images with larger matrix sizes than are currently available. The image is allowed to alias in both the frequency encoding and phase encoding dimensions, and the individual, aliased fields of view are recovered by Hadamard encoding methods. These fields may then be tiled to obtain a composite image with high spatial resolution and a large field of view. The technique is demonstrated using two-dimensional and three-dimensional in vivo imaging of the human brain and breast.  相似文献   

11.
高分辨核磁共振(Nuclear Magnetic Resonance,NMR)谱的获得通常需要高度稳定且均匀的强静磁场. 阻抗磁体或阻抗-超导混合磁体可获得比超导磁体高得多的磁场, 但它们的磁场的稳定性与均匀性比较差;另一方面, 在活体定域波谱研究中,样品内部组分的磁化率差异,运动或生理活动等作用将不可避免地导致磁场的不均匀不稳定,并且这些不稳定不均匀性无法通过锁场匀场等传统的方法消除. 基于分子间零量子相干的方法、空间编码单扫描快速方法、反卷积技术等日渐成为在不均匀不稳定磁场下获取高分辨率的NMR谱的研究热点.  相似文献   

12.
A new approach to the theory of compensating fields is given. The theory is extended to the case of an arbitrary Lie group and leads to a nonlinear field theory, describing the interaction of physical fields and the generation by this interaction of a non-Euclidean space-time geometry, generalizing the well-known result of the Einstein theory on the connection between geometry and matter. The theory is applied to a number of groups.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 128–134, December, 1974.The author is grateful to Professor D. D. Ivanenko, who has made such significant contributions to the development of the theory of compensation and its nonlinear generalizations and to the treatment of gravitation as a gauge field. The author also wishes to thank B. N. Frolov and V. N. Ponomarev for valuable discussions.  相似文献   

13.
核磁共振(NMR)技术作为一种非植入无损伤的检测技术,已经广泛应用于化学、生物和医学等领域.本文基于哈德曼(Hadamard)编码的分子间单量子相干(iSQC)技术提出了一种新的序列,首先从理论上对该序列进行了简要的分析并阐明其原理,然后用套管模型实验和脑模型实验验证该序列在不均匀磁场下准确定域和快速获取高分辨谱的能力.实验表明,该序列在不均匀磁场下可以快速获取高分辨定域谱,同时抑制溶剂峰信号,具备一定的应用价值.  相似文献   

14.
Parallel MRI at microtesla fields   总被引:2,自引:2,他引:0  
Parallel imaging techniques have been widely used in high-field magnetic resonance imaging (MRI). Multiple receiver coils have been shown to improve image quality and allow accelerated image acquisition. Magnetic resonance imaging at ultra-low fields (ULF MRI) is a new imaging approach that uses SQUID (superconducting quantum interference device) sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at microtesla-range measurement fields. In this work, parallel imaging at microtesla fields is systematically studied for the first time. A seven-channel SQUID system, designed for both ULF MRI and magnetoencephalography (MEG), is used to acquire 3D images of a human hand, as well as 2D images of a large water phantom. The imaging is performed at 46 mu T measurement field with pre-polarization at 40 mT. It is shown how the use of seven channels increases imaging field of view and improves signal-to-noise ratio for the hand images. A simple procedure for approximate correction of concomitant gradient artifacts is described. Noise propagation is analyzed experimentally, and the main source of correlated noise is identified. Accelerated imaging based on one-dimensional undersampling and 1D SENSE (sensitivity encoding) image reconstruction is studied in the case of the 2D phantom. Actual threefold imaging acceleration in comparison to single-average fully encoded Fourier imaging is demonstrated. These results show that parallel imaging methods are efficient in ULF MRI, and that imaging performance of SQUID-based instruments improves substantially as the number of channels is increased.  相似文献   

15.
16.
A method for compensating effect of field fluctuation is examined to attain high-resolution NMR spectra with resistive and hybrid magnets. In this method, time dependence of electromotive force induced for a pickup coil attached near a sample is measured synchronously with acquisition of NMR. Observed voltage across the pickup coil is converted to field fluctuation data, which is used to deconvolute NMR signals. The feasibility of the method is studied by (79)Br MAS NMR of KBr under a 30T magnetic field of a hybrid magnet. Twenty single-scan NMR signals were accumulated after the manipulation, resulting in a high-resolution NMR spectrum.  相似文献   

17.
High spatial resolution NMR imaging techniques have been developed recently to measure the spatial inhomogeneity of a polymer coating film. However, the substrates of the polymer coatings for such experiments are generally required to be non-metallic, because metals can interact with static magnetic fields B(0) and RF fields B(1) giving rise to artifacts in NMR images. In this paper we present a systematic study on the effects of metallic substrates on 1D profiles obtained by high resolution NMR imaging. The off-resonance effect is discussed in detail in terms of the excitation profile of the RF pulses. We quantitatively show how the NMR signal intensities change with frequency offset at different RF pulse lengths. The complete NMR profiles were simulated using a Finite Element Analysis method by fully considering the inhomogeneities in both B(1) and B(0). The excellent agreement between the calculated and measured NMR profiles on both metallic and non-metallic substrates indicates that the experimental NMR profiles can be reproduced very well by numerical simulations. The metallic substrates can disturb the RF field of the coil by eddy current effect and therefore change the NMR profiles. To quantitatively interpret the NMR profile of a polymer layer on a metallic substrate, the profile has to be divided by the profile of a reference on the same metallic substrate located at the same distance from the coil.  相似文献   

18.
A pulsed field gradient stimulated spin-echo NMR sequence is combined with imaging methods to spatially resolve velocity distributions and to measure 2D velocity maps ex situ. The implementation of these techniques in open sensors provides a powerful non-invasive tool to measure molecular displacement in a large number of applications inaccessible to conventional closed magnets. The method is implemented on an open tomograph that provides 3D spatial localization by combining slice selection in the presence of a uniform static magnetic field gradient along the depth direction with pulsed field gradients along the two lateral directions. Different pipe geometries are used to demonstrate that the sequence performs well even in the extremely inhomogeneous B0 and B1 fields of these sensors.  相似文献   

19.
A radically new version of a system for compensating external magnetic fields in magnetic electron spectrometers is proposed. The main difference of the proposed system is that it, being fairly small, forms a highly uniform compensating magnetic field not in the central region of the instrument, as is generally done, but in the region of motion of analyzed electrons.  相似文献   

20.
With improved B 0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B 0 inhomogeneities, especially second-order shim terms, a 200 x 200 microm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号