首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S.J. May 《Applied Surface Science》2006,252(10):3509-3513
Variable-temperature magnetic force microscopy (MFM) has been performed over the temperature range of 298-348 K on ferromagnetic (In,Mn)As thin films deposited by metal-organic vapor phase epitaxy (MOVPE). Ferromagnetic domains were observed with submicron resolution in both single and two phase (In,Mn)As films, persisting up to 328 K. Isolated cylindrical domains ranging from 100 to 350 nm in diameter with densities of 2-5 × 108 cm−2 were observed in phase pure films. Longer range magnetic order, in the form of ribbon-like domains up to 1 μm in length, are present in the regions between the cylindrical domains. Two phase (In,Mn)As films produced a well-resolved complex domain structure consisting of 180° parallel and antiparallel domains. Excellent agreement between the temperature dependence of the relative magnetization obtained by MFM and superconducting quantum interference device measurements was observed.  相似文献   

2.
In this paper, we present the first observation of the domain structure of Nd–Fe–B magnets with the type-I magnetic contrast in a scanning electron microscope (SEM). The applied method was supported with digital image recording, enhancement and analysis. Observations were made at the surfaces perpendicular to the alignment axis. The domain pattern is revealed in the form of undulated stripes magnetized alternately in the two directions along the alignment axis. However, because of insufficient spatial resolution of the SEM type-I magnetic contrast we could not observe reverse spike domains of about 0.5 μm in diameter, the presence of which was proved by Bitter pattern technique and magnetic force microscopy (MFM). The smallest resolvable domain was 0.8 μm in width, being the best result so far obtained with the type-I magnetic contrast method. Some aspects related to the domain observation with the method applied are discussed in more detail. It is anticipated that the spatial resolution of the method can be improved to 0.2–0.3 μm by employing SEMs with high-brightness electron guns.  相似文献   

3.
A specific technique of numerical treatment of atomic force microscopy (AFM) and magnetic force microscopy (MFM) signal has been developed to enhance the quality of raw images, in order both to improve their contrast and to gain better insight on the sample topography and on the local arrangement of the magnetisation vector. Basically, the technique consists in computing the optimum conformal transformation that allows one to superimpose two AFM images of the same area, acquired performing subsequent scans whose fast scan axis were mutually perpendicular, and applying the inverse transform to the second image. After MFM image superposition, the two datasets were either summed or subtracted, in order to improve the magnetic contrast. Computations have been done in a Matlab® workspace with the help of Image Processing Toolbox 4.2. Improved MFM images obtained on both dots and antidots thin evaporated Co arrays in the demagnetised state (after performing alternate field demagnetisation parallel and perpendicular to the array plane) have been interpreted. Samples consisting of large-size patterns (1×1 mm) of circular dots/antidots with square/hexagonal lattices and minimum diameters of 1 μm were prepared by optical lithography. The magnetic film thickness was chosen depending on resist thickness, and varied between 25 and 150 nm, with a fixed ratio 1:4 between metal/resist film thickness. MFM was exploited to obtain images of either intra-dot or inter-antidot magnetic structures.  相似文献   

4.
The magnetic domain structure in oriented Tb0.3Dy0.7Fe1.92 (Terfenol-D) is investigated by scanning electron acoustic microscopy (SEAM) in a wide frequency range from 75 to 530 kHz. Both secondary electron image and electron acoustic image can be obtained in situ simultaneously. By changing the modulation frequencies, the SEAM can be used as an effective nondestructive method to observe not only the surface topography and domain structure but also the subsurface domain structure and defects. The magnetic domain structure is verified by magnetic force microscopy (MFM). Furthermore, magnetic domains can be observed in both linear and nonlinear imaging modes by SEAM. The contributions to the image contrast are related to the signal generation through the piezomagnetic coupling mechanism, magnetostrictive coupling mechanism, and thermal-wave coupling mechanism.  相似文献   

5.
Magnetic domain patterns in bulk barium ferrite (BaFe12O19; BaM) single crystals on the basal plane and the prism plane were measured and studied by magnetic force microscopy (MFM). The surface domain pattern is in the form of flowers or star on the basal plane and long elongated spikes or stripe domains on the prism plane. The change in domain structure with applied field (Happ) and the thickness (T) dependence on domain width (δ) was observed. The domain width decreased from 32 to 9 μm for the crystals of 800-100 μm thicknesses, respectively.  相似文献   

6.
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni80Fe20) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as ∼21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. a weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic force microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.  相似文献   

7.
A near-field scanning microwave microscope (NSMM) incorporating an atomic force microscope (AFM) probe tip was used for the direct imaging of magnetic domains of a hard disk under an external magnetic field. We directly imaged the magnetic domain changes by measuring the change of reflection coefficient S11 of the NSMM at an operating frequency near 4.4 GHz. Comparison was made to the magnetic force microscope (MFM) image. Using the AFM probe tip coupled to the tuning fork distance control system enabled nano-spatial resolution. The NSMM incorporating an AFM tip offers a reliable means for quantitative measurement of magnetic domains with nano-scale resolution and high sensitivity.  相似文献   

8.
Microstructures of fine grained Nd-Fe-B sintered magnets that were produced by the pressless process were investigated to understand the origin of the sudden coercivity decrease below a certain grain size. The intrinsic coercivity is inversely proportional to ln D2 with the highest coercivity of 17 kOe at D∼4.5 μm, below which the coercivity drops as the grain size decreases. We found that the degradation of the coercivity of the magnet with a grain size of 3 μm was mainly caused by the inhomogeneous distribution of fcc-Nd oxide whose volume fraction increased with respect to the dhcp Nd-rich phase.  相似文献   

9.
The Fe14.5Co16.5Ni55B15 and the Fe13Co15.5Ni51.5B20 ferromagnetic nanowires were deposited using the electrochemical deposition method. The structure of these nanowires was investigated using X-ray diffraction. Squid magnetometer was used to investigate the magnetic behavior. The hysteresis loops of 50 μm long nanowire arrays were studied as a function of boron concentration, nanowire diameter and field orientation. The competition between shape anisotropy and magnetostatic interactions played a vital role in determining the magnetic field necessary to saturate an array. The decrease in coercive field (Hc) and the squareness (SQ) of the hysteresis loop from 100 to 200 nm wire diameter for both types of compositions suggests the formation of multidomains in the nanowire.  相似文献   

10.
A magnetic force microscopy is used to examine the domain walls in nickel and cobalt films deposited by argon ion sputtering. Thin nickel films deposited at high substrate temperatures exhibit coexistent Bloch and Neel walls. Films grown at room temperature display alternative Bloch lines with cap switches. These films agglomerate to form grains after annealed at high temperatures. The film composed of larger grains behaves better nucleation implying magnetic domains of closure, while the film composed of smaller grains exhibits more defects implying alternative Bloch lines. We have also observed domain displacements and cap switches, which occur due to precipitation of particles in small grain size films. Stripe domains are observed for film thicknesses larger than 100 nm. They become zigzag cells when an external field of 1.5 T is applied perpendicular to the surface of the films. This experiment indicates that the domain sizes in thin films and the strip widths for thick films both depend on the square-root of the film thickness, which varies from 5 to 45 nm and from 100 to 450 nm, respectively.  相似文献   

11.
The magnetic and mechanical properties of Nd-Fe-B magnets at different hot deformation temperatures have been investigated. The results showed that the optimum magnetic and mechanical properties and the highest crystallographic alignment of Nd-Fe-B magnets were obtained at 700 °C, and the possible reasons were analyzed. The microstructures show that abnormal grain growth is not observed at 650 °C; there exist many small spherical grains, and these small grains do not align during die upsetting. The average size of the grains and the volume fraction of coarse grains increase with increase in deformation temperature. The coarse grains do not align during die upsetting, and the non-alignment regions enlarge with increase in deformation temperature.  相似文献   

12.
In this work we present a magnetic study of La0.67Sr0.33MnO3 (LSMO) and La0.67Ca0.33MnO3 (LCMO) nanotubes with nominal external diameters (?) of 100, 200, 600 and 800 nm. The 800 nm diameter nanotubes have walls of around 50 nm thickness in all the cases. The walls are constituted by an assembly of nanoparticles with a non-Gaussian size distribution presenting a maximum at 24 ± 6 nm (LSMO) and 25 ± 8 nm (LCMO). We carried out isothermal remanent magnetization (IRM) and dc demagnetization (DCD) experiments. We determined that the crystallites are single magnetic domains with a magnetic dead layer on the surface which avoids exchange interactions among grains. We conclude that the dominating interactions are of dipolar type of the same magnitude for all the samples.  相似文献   

13.
The conventional Bitter-pattern technique and the colloid-scanning electron microscopy (colloid-SEM) method were used to study the domain structure of polycrystalline sintered Nd-Fe-B permanent magnets. In the thermally demagnetized state most of the grains are multidomain and the domain structures resemble those observed in bulk uniaxial crystals with strong magnetocrystalline anisotropy. Investigations of the magnetic microstructure during magnetizing cycle showed that the domain walls can easily be moved within the grains and that the magnetization reversal in sintered Nd-Fe-B magnets occurs predominantly by the nucleation and expansion of reverse domains at structural imperfections near the grain boundaries. It is also shown that the colloid-SEM method is more surface sensitive and reveals the domain structure with better resolution than the conventional Bitter technique. Thanks to the application of digital image processing systems, clear and high contrast domain images were obtained. The work was supported by the Lódź University within Research Grant 505/694 (2004).  相似文献   

14.
Effects of interactions between grains with different alignment degrees on the coercivity and its angular dependence for Nd16(Fe0.8Co0.2)78B6 sintered magnets have been studied. The experiments show that the intrinsic coercivity jHc decreases with enhancing grain alignment (decreasing alignment coefficient σ), the coercivity jHc(θ) increases with increasing angle θ between the applied field and the texture axis of the magnets and the variation ratio is larger for the magnets with better grain alignment. The coercivity of the magnets should be determined by the critical field making the moment of individual grains reverse and the interactions between the grains. For the sintered magnets composed of the grains with μm size, the magnetostatic interaction between the grains is stronger than the exchange coupling interaction and it makes the coercivity of magnet increase with increasing alignment coefficient σ. Taking into account the intergrain interactions, the starting field theory of coercivity is in good agreement with the experimental results for Nd16(Fe0.8Co0.2)78B6 sintered magnets.  相似文献   

15.
Square magnetic elements with side in the 100–500 nm range have been fabricated using the focused ion beam (FIB) milling technique from a 10 nm thick, single-crystal Fe film, epitaxially grown on MgO(0 0 1). Thanks to the good crystal quality of the film, magnetic elements with well-defined magnetocrystalline anisotropy have been prepared, while the fine control of the size and shape of the magnets allows for the effective engineering of the anisotropic behavior of the magnetostatic energy that determines the so-called configurational anisotropy. Micromagnetic calculations and experiments show that the angular dependence of the transverse susceptibility has a strong dependence on the material parameters as well as on the static applied field. This allows the effective engineering of the total anisotropy of the magnets.  相似文献   

16.
The paper deals with an appealing route to activate silicon microcantilevers (90, 110 and 130 μm long, 35 μm wide and 2 μm thick) for specific binding of biochemical species. The method consists in coating the underivatized microcantilevers with a biofunctional copolymer (based on N,N-dimethylacrylamide bearing silanating moieties) that was developed for low-density microarray assays on microscope glass slides. Coating deposition was obtained by dip-coating and its microstructure investigated by analyzing the resonance frequency values of bare and coated microcantilevers, by SEM and SFM imaging, SFM tip-scratch tests and XRR experiments. Results indicate that the coating is 2.5 nm thick and has a density of 1.22 g/cm3. The coating surface is nanostructured, displaying nanoblobs, which are from few up to 20 nm wide and, on average, 1.6 nm high. The diameter of the biggest nanoblobs is of the same order of magnitude of the gyration radius of the copolymer chains, suggesting that nanoblobs may identify individual macromolecules.  相似文献   

17.
Au/Co(4–8 ML)/Au single magnetic layers and Au(8 ML)/Co(4 ML)/Au(8 ML)/Co(8 ML)/Au bilayer were sequentially grown by electrodeposition on an Au(1 1 1) buffer layer electrodeposited on Si(1 1 1). The technique used in this work provides full control on the structure and the chemical composition of the different layers (no alloying) as well as on the chemistry at interfaces. scanning tunneling microscopy (STM) and atomic force microscopy (AFM) imaging and X-ray diffraction measurements show that atomically flat continuous Co(0 0 0 1) layers (4–8 ML) can be grown in epitaxy with the Au(1 1 1) substrate and that the 2 nm-thick spacer is also a continuous Au(1 1 1) layer. The Co ultrathin layers (4 and 8 ML) exhibit perpendicular magnetic anisotropy. The lateral magnetic homogeneity and magnetization reversal process have been investigated by scanning magneto-optical Kerr effect (MOKE) magnetometry and global Kerr microscopy. The correlation between magnetization switching behaviour in each layer of the Co-bilayer stack has been evidenced from in-depth sensitive MOKE measurements and microscopy. The strong coupling observed between the two Co layers is attributed to magnetostatic interaction at domain wall boundaries.  相似文献   

18.
The magnetic and mechanical properties of rare-earth magnets hot-deformed at temperature range 750-950 °C have been investigated. The grains tended to grow excessively from dozens of nanometers to several microns at the temperatures above 850 °C. The alignment of grains was disrupted by the hot deformation at the high temperatures. The Nd-rich phase was extruded at the temperatures which are higher than 850 °C. The Nd-rich phase extrusion resulted in the reduction of density by 1% and the reduction of remanence from 1.42 to 0.72 T. The reduction of grain boundaries caused by flat platelet-shaped grains changing to spherical grains and the weak binding strength among large grains of Nd2Fe14B phase may be the main reasons for the low mechanical strength of hot-deformed magnets.  相似文献   

19.
In this work, 0.30 μm thick LiNbO3 layers have been deposited by sputtering on nanocrystalline diamond/Si and platinised Si substrates. The films were then analyzed in terms of their structural and optical properties. Crystalline orientations along the (0 1 2), (1 0 4) and (1 1 0) axes have been detected after thermal treatment at 500 °C in air. The films were near-stoichiometric and did not reveal strong losses or diffusion in lithium during deposition or after thermal annealing. Pronounced decrease of the roughness on top of the LiNbO3 layer and at the interface between LiNbO3 and diamond was also observed after annealing, compared to the bare nanocrystalline diamond on Si substrate. Furthermore, ellipsometry analysis showed a better density and a reduced thickness of the surface layer after post-deposition annealing. The dielectric constant and losses have been measured to 50 and less than 3.5%, respectively, for metal/insulator/metal structures with 0.30 μm thick LiNbO3 layer. The piezoelectric coefficient d33 was found to be 7.1 pm/V. Finally, we succeeded in switching local domain under various positive and negative voltages.  相似文献   

20.
A novel experimental technique for three-dimensional (3D) visualization of phase-separated structure of polymer blend thin film was proposed. Polystyrene/poly(methyl methacrylate) (PS/PMMA) blend thin films with the thickness of approximately 100 nm were cut at extremely low angle by utilizing surface and interface cutting analysis system (SAICAS), and the cross-section was exposed as gradient surface with the width of approximately 2.5 μm. SFM investigation for the grazing cross-section imaged the detailed internal and surface phase separated structure of the (PS/PMMA) blend thin films on one image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号