首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Supercontinuum generation by dual-wavelength nanosecond pumping in the vicinity of both zero-dispersion wavelengths of a photonic crystal fiber (PCF) is experimentally demonstrated. It is shown in particular that two pumps at 1535 nm and 767 nm simultaneously pumping near the two zero-dispersion wavelengths of a specially designed PCF yields a combined visible and infrared supercontinuum spectrum spanning from 0.55 μm to 1.9 μm. We discuss the generation mechanisms underlying the continuum formation in terms of modulation instability and cascaded Raman generation.  相似文献   

2.
We have proposed and discussed a design of arrayed waveguide grating (AWG) for the application of wavelength interrogation. The spectral responses of a silica-based 16 channel AWG with channel spacing 1.6 nm have been simulated when different receiver waveguide spacing are used. It was found that the 3-dB bandwidth is reduced about 50% as the receiver waveguide spacing increasing from 20 μm to 30 μm. The effect of bandwidth of the spectral response on wavelength resolution of AWG based interrogator has been estimated and discussed.  相似文献   

3.
Using a plasma polymerisation process with optical lithography, wet and dry etching techniques we have fabricated an organic micro-fluidic device (OMDF) on silicon/glass substrate. An asymmetric electrode array used in micro-fluidic device (MFD) with small electrode (4 μm wide) separated from the large electrode (20 μm wide) by 20 μm and 6 μm gaps in both sides respectively. In this study we have found that plasma polymerisation process is not only important for changing the surface chemical and physical properties but also has advantage in bonding of these micro devices at low temperature (∼100 °C) due to low Tg of polymeric material. The fluidic velocity measurement shows a maximum of about 450 μm/s in a 150 μm channel width of organic micro-fluidic devices after plasma surface modification.  相似文献   

4.
The objective of this paper is to investigate the implementation of a hybrid photonic crystal (PhC) 1.31/1.55 μm wavelength division multiplexer (WDM) and wavelength channel interleaver with channel spacing of roughly 0.8 nm between the operating wavelengths of 1.54-1.56 μm. It is based on 1-D photonic crystal (PhC) structure connected with an output 2-D PhC structure. The power transfer efficiency of the hybrid PhC WDM at 1.31 μm and 1.55 μm were computed by eigen-mode expansion (EME) method to be about 88% at both the wavelengths. The extinction ratios obtained for the 1.31 μm and 1.55 μm wavelengths are − 25.8 dB and − 22.9 dB respectively.  相似文献   

5.
In this paper, we systematically study a designed structure of a bending dual-core photonic crystal fiber (PCF). We propose the controllable wavelength-selective coupling PCF. This coupler allows highly accurate control of the filtering wavelength. The different wavelengths can be selected by controlling the bending radius of the fiber. Coupling characteristics of novel bending wavelength-selective coupling PCF are evaluated by using a vector finite element method and their application to a multiplexer demultiplexer (MUX–DEMUX) based on the novel coupler is investigated. When the fiber length is 4168 μm, the bending radius of PCF couplers for 1.48/1.55 μm, 1.3/1.55 μm, 0.98/1.55 μm, and 0.85/1.55 μm is calculated, respectively, and the beam propagation analysis is performed. Different from the traditional wavelength-selective coupling PCF, the dual-core PCF is bent and it can realize the separation of multiple wavelengths.  相似文献   

6.
Efficient conversion into the mid-IR of a low pulse-energy (2.5 mJ) Nd:YAG laser is achieved by cascaded KTiOPO4 (KTP) and ZnGeP2 (ZGP) optical parametric oscillators followed by a ZGP optical parametric amplifier. The first stage 2.13 μm degenerate KTP OPO uses four KTP crystals in a walk-off compensated geometry and an elliptical pump beam focal geometry to produce up to 2.2 W from 6.3 W incident. The 2.13 μm e-ray pumps a Type-I ZGP OPO, which produces 0.5 W of light in the 3.8-4.8 μm spectral region that in turn is amplified by a 2.13 μm o-ray pumped optical parametric amplifier generating 0.84 W with an M2 of <2.  相似文献   

7.
A. Gorin 《Optics Communications》2011,284(8):2164-2167
In this work, we report the fabrication of single-mode Nb2O5 based hybrid sol-gel channel waveguides. Nb2O5 based hybrid sol-gel material has been deposited by spin-coating on silicon substrate and channel waveguides have been fabricated by a UV direct laser writing process. Optical guided modes have been observed to confirm single-mode conditions and optical propagation loss measurements have been performed using the cut-back technique. Optical propagation losses were measured to be 0.8 dB/cm and 2.4 dB/cm at 1.31 μm and 1.55 μm respectively. These experimental results demonstrate low loss optical waveguiding within the infrared range and are very promising in view of material choice for the development of integrated optical devices for telecommunication.  相似文献   

8.
Silicon-incorporated diamond-like carbon (Si-DLC) films were deposited via dc plasma-enhanced chemical vapor deposition (PECVD), on glass and alumina substrates at a substrate temperature 300 °C. The precursor gas used was acetylene and for Si incorporation, tetraethyl orthosilicate dissolved in methanol was used. Si atomic percentage in the films was varied from 0% to 19.3% as measured from energy-dispersive X-ray analysis (EDX). The binding energies of C 1s, Si 2s and Si 2p were determined from X-ray photoelectron spectroscopic studies. We have observed low-macroscopic field electron emission from Si-DLC thin films deposited on glass substrates. The emission properties have been studied for a fixed anode-sample separation of 80 μm for different Si atomic percentages in the films. The turn-on field was also found to vary from 16.19 to 3.61 V/μm for a fixed anode-sample separation of 80 μm with a variation of silicon atomic percentage in the films 0% to 19.3%. The turn-on field and approximate work function are calculated and we have tried to explain the emission mechanism there from. It was found that the turn-on field and effective emission barrier were reduced by Si incorporation than undoped DLC.  相似文献   

9.
Microchannels have been fabricated by laser direct-write in photostructurable glass-ceramic (Foturan) for their application in 3D-microfluidic systems. A Nd:YAG laser delivering 10 ns pulses at 355 nm wavelength has been used for irradiation. Afterwards, thermal treatment and chemical etching have been required for channel formation. The kinetics of channel formation and the channel morphology have been studied by optical and electron microscopy. A minimum accumulated energy (pulse energy multiplied by the number of pulses in a same site) is required to induce channel formation. Channels with symmetric round apertures at both ends can be obtained when using low pulse energies. On the contrary, irradiation with too high energetic pulses produces direct material damage in Foturan and provokes the formation of non-symmetric channels. One millimetre long channels with a minimum radius of 15 μm can be opened through Foturan slides after 15 min of chemical etching.  相似文献   

10.
A new two dimensional photonic crystal demultiplexer of wavelength (WDM) is designed by exploiting two Fabry–Pérot reflectors at the end of the bus waveguides. The results show that the light with different wavelengths can be successfully filtered to different ports by setting different radius of the center defect rods in the drop waveguides and high drop efficiency can be achieved by means of reflection feedbacks. The proposed filter has a cross section equal to 9.7 μm × 5.8 μm. In the designed filter, an improvement of the number of channels has been achieved. The normalized transmission spectra of this component have been studied using finite difference time domain (FDTD) method. The important parameters consider for this studies are radius of rods used in Fabry–Pérot reflectors, and radius of center defect rods in the drop waveguides. The demultiplexer we designed can easily separate the light with seven different wavelengths simultaneously. The scope of this paper lies on demultiplexer for communication systems around 1.55-μm wavelength.  相似文献   

11.
This paper presents a simple index-guiding square photonic crystal fiber (SPCF) where the core is surrounded by air holes with two different diameters. The proposed design is simulated through an efficient full-vector modal solver based on the finite difference method with anisotropic perfectly matched layers absorbing boundary condition. The nearly zero ultra-flattened dispersion SPCF with low confinement loss, small effective area as well as broadband supercontinuum (SC) spectra is targeted. Numerical results show that the designed SPCF has been achieved at a nearly zero ultra-flattened dispersion of 0 ± 0.25 ps/(nm·km) in a wavelength range of 1.38 μm to 1.89 μm (510 nm band) which covers E, S, C, L and U communication bands, a low confinement loss of less than 10−7 dB/m in a wavelength range of 1.3 μm to 2.0 μm and a wide SC spectrum (FWHM = 450 nm) by using picosecond pulses at a center wavelength of 1.55 μm. We then analyze the sensitivity of chromatic dispersion to small variations from the optimum value of specific structural parameters. The proposed index-guiding SPCF can be applicable in supercontinuum generation (SCG) covering such diverse fields as spectroscopy applications and telecommunication dense wavelength division multiplexing (DWDM) sources.  相似文献   

12.
The flattening of aluminum and copper particles cold sprayed onto ceramic surfaces has been described by an ellipsoidal function. The accuracy of this approximation was verified from particle dissections performed in a focused ion beam/scanning electron microscope (FIB/SEM). Flattening data were collected from SEM measurements. It was shown that aluminum particle deformation was limited below ∼5 μm, and copper deformation below ∼2 μm. Deceleration of the particles through the bow shock, strain rate hardening and thermal conduction were factors that contributed to the differences in deformation behaviour.  相似文献   

13.
An ultra small size 4-channel wavelength division demultiplexer based on 2D photonic crystal modified Y-Branch, suitable for integration, is proposed in this paper. The output wavelengths of designed structure can be tuned for communication applications (around 1550 nm) by choosing suitable defect parameters in the corner of each resonance cavity and output waveguides. The cross section of the structure is 313.28 μm2 (17.8 μm × 17.6 μm) and desirable for integration based on popular planar technology. The bandwidth of each channel is near to 1 nm and the channel spacing is approximately 3.5 nm and wavelengths of demultiplexer channels are 1548.8 nm, 1551.9 nm, 1555.4 nm and 1559.3 nm respectively. Also, the crosstalk is between −33.1855 dB and −10.4947 dB. Furthermore, the mean values of the crosstalk and quality factor are −22.54 dB and 1496.7 respectively.  相似文献   

14.
A high repetition rate mid-infrared singly resonant optical parametric oscillator (OPO) using MgO-doped multi-grating periodically poled LiNbO3 (MgO:PPLN) is demonstrated. A 1064 nm Q-switched Nd:YVO4 laser at 10 kHz repetition rate and pulse width of 17.8 ns was used to pump the OPO. The period of the quasi-phase matched (QPM) grating in the multi-grating MgO:PPLN chip varied from 25.5 to 31.5 μm in steps of 0.5 μm. This corresponds to the generation of a signal beam from 1.37 to 1.64 μm and an idler beam from 3.0 to 4.8 μm, respectively. A maximum signal power of 250 mW and idler power of 140 mW has been obtained with an input pump beam of power 1.92 W, for a grating period of 30.5 μm. A maximum optic-optic conversion efficiency of 20% and 7.4% in the idler has been observed. It has been observed that the output power increases as the period of the grating increases.  相似文献   

15.
A design of octagonal photonic crystal fiber (OPCF) with F-doped elliptical hole core is proposed. The proposed design is simulated through an full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Numerical results show that the designed OPCF has the ultra-flattened dispersion of 0 ± 0.4 ps/(nm km) from 1.34 μm to 1.72 μm (380 nm band) which covers S, C and L communication bands, a low confinement loss of less than 10−7 dB/m in the same wavelength range, and the corresponding birefringence and nonlinear coefficient are about 2.12 × 10−2 and 50.67 W−1 km−1 at 1.55 μm, respectively. The proposed OPCF may have great potential applications in super-continuum (SC) generation, dispersion compensation, polarization maintaining and so on.  相似文献   

16.
An optical spectrograph for use in the OGS (Optical Ground Station), a 1 m telescope in Izaña Observatory (Tenerife, Spain) and the GTC telescope at Islas Canarias observatory has been designed, built and tested. The dispersive part was designed and built at the Centro de Investigaciones en Óptica, A.C. Due to requirements from Instituto Astrofísico de Canarias this Spectrograph has an f/5 collimator and camera with a plate factor of 6.55 nm/mm. Since the resolution of the system has to have a high resolution of the order of 15 μm or less, an apochromatic design was selected. This article describes this design and its main characteristics.  相似文献   

17.
We present results where highly supersonic plasma jets and accelerated plasma fragments are generated by interaction of an intense picosecond laser pulse with a metallic target (Al, Cu, W, and Ta) in gas atmosphere. The formation of jets and well-localized massive plasma fragments occurs when a strong forward shock from a main laser pulse and a reverse shock from a pre-pulse meet to. Interferometric and shadow graphic measurements with high temporal (100 ps) and spatial (1 μm) resolution yield information about the formation and evolution of plasma jets and plasma fragments. The excitation of the electric and self-generated magnetic field by ponderomotive force during propagation of the laser pulse in a gas atmosphere was investigated as well. It had been shown previously that under certain conditions a hollow current channel can be generated in laser-produced plasma. The azimuthal magnetic field in such a micro-channel was determined by Faraday rotation of a probing laser beam to be 7.6 MGauss (MG). Ion acceleration in a pinched annular current channel up to 8 MeV analogous to micro-“plasma focus” conditions, may be realized at lengths of 100 μm. Self-generated magnetic fields of 4-7 MG have also been measured in thin skin layers in front of shock waves, where well-collimated plasma blocks were separated and accelerated away from the plasma body. The velocity of dense plasma blocks reaches values of order of 3 × 108 cm/s and they are stable during acceleration and propagation in gas.  相似文献   

18.
A micro objective lens for HD-DVD with the Numerical Aperture (NA) of 0.65 at blue laser wavelength with clear aperture diameter of 1.5 mm has been designed on acrylic material using freeform surfacing method. Optical performance evaluation parameters have been compared with bi-aspheric surfaces based objective lens design. Freeform surface based design has higher degrees of freedom compare to conventional aspheric surfaces that can reduce aberrations significantly. Maximum RMS error is 0.003λ at 0.4° and maximum RMS radius is 0.027 μm while airy disk radius is 0.3803 μm for freeform surface based design. Hence single freeform surface based design can reduce the fabrication complexity and tooling time, at the same instance provides comparable performance with bi-aspheric surfaces based design.  相似文献   

19.
The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.  相似文献   

20.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号