首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.  相似文献   

2.
In this paper, a Monte Carlo simulation is carried out to evaluate the equilibrium magnetization of magnetic multi-core nanoparticles in a liquid and subjected to a static magnetic field. The particles contain a magnetic multi-core consisting of a cluster of magnetic single-domains of magnetite. We show that the magnetization of multi-core nanoparticles cannot be fully described by a Langevin model. Inter-domain dipolar interactions and domain magnetic anisotropy contribute to decrease the magnetization of the particles, whereas the single-domain size distribution yields an increase in magnetization. Also, we show that the interactions affect the effective magnetic moment of the multi-core nanoparticles.  相似文献   

3.
One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800–1100 μm.The adsorption of Cu(II) onto chitosan–magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.  相似文献   

4.
A great deal of attention has been paid to the use of magnetite nanoparticles as heating elements in the research of magnetic fluid hyperthermia. However, these particles have a relatively low magnetization and as a result, have low heating efficiency as well as difficulties in detection applications. To maximize heating efficiency we propose and show the use of high-moment Fe(Co)-Au core-shell nanoparticles. Using a physical vapor nanoparticle-deposition technique the high-moment nanoparticles were synthesized. The water-soluble particles were placed in an AC magnetic field of variable magnetic field frequencies. The temperature rise was measured and compared to theory.  相似文献   

5.
Magnetic microspheres (MMS) are useful tools for a variety of medical and pharmaceutical applications. Typically, commercially manufactured MMS exhibit broad size distributions. This polydispersity is problematic for many applications. Since the direct synthesis of monodisperse MMS is often fraught with technical challenges, there is considerable interest in and need associated with the development of techniques for size-dependent fractionation of MMS. In this study we demonstrated continuous size-dependent fractionation of sub-micron scale particles driven by secondary (Dean effect) flows in curved microfluidic channels. Our goal was to demonstrate that such techniques can be applied to MMS containing superparamagnetic nanoparticles. To achieve this goal, we developed and tested a microfluidic chip for continuous MMS fractionation. Our data address two key areas. First, the densities of MMS are typically in the range 1.5–2.5 g/cm3, and thus they tend be non-neutrally buoyant. Our data demonstrate that efficient size-dependent fractionation of MMS entrained in water (density 1 g/cm3) is possible and is not significantly influenced by the density mismatch. In this context we show that a mixture comprising two different monodisperse MMS components can be separated into its constituent parts with 100% and 88% success for the larger and smaller particles, respectively. Similarly, we show that a suspension of polydisperse MMS can be separated into streams containing particles with different mean diameters. Second, our data demonstrate that efficient size-dependent fractionation of MMS is not impeded by magnetic interactions between particles, even under application of homogeneous magnetic fields as large as 35 kA/m. The chip is thus suitable for the separation of different particle fractions in a continuous process and the size fractions can be chosen simply by adjusting the flow velocity of the carrier fluid. These facts open the door to size dependent fractionation of MMS.  相似文献   

6.
Ferrofluids are widely used in pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro-valve applications. The purpose of the current study is to investigate the effect of a magnetic field on the volume concentration of magnetic nanoparticles of a non-Newtonian biofluid (blood) as a drug carrier. The effect of particles on the flow field is considered. The governing non-linear differential equations, concentration and Naviar-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. The results show accumulation of magnetic nanoparticles near the magnetic source until it looks like a solid object. The accumulation of nanoparticles is due to the magnetic force that overcomes the fluid drag force. As the magnetic strength and size of the magnetic particles increase, the accumulation of nanoparticles increases, as well. The magnetic susceptibility of particles also affects the flow field and the contour of the concentration considerably.  相似文献   

7.
The concept of using magnetic particles (seeds) as the implant for implant assisted-magnetic drug targeting (IA-MDT) was analyzed in vitro. Since this MDT system is being explored for use in capillaries, a highly porous (ε∼70%), highly tortuous, cylindrical, polyethylene polymer was prepared to mimic capillary tissue, and the seeds (magnetite nanoparticles) were already fixed within. The well-dispersed seeds were used to enhance the capture of 0.87 μm diameter magnetic drug carrier particles (MDCPs) (polydivinylbenzene embedded with 24.8 wt% magnetite) under flow conditions typically found in capillary networks. The effects of the fluid velocity (0.015–0.15 cm/s), magnetic field strength (0.0–250 mT), porous polymer magnetite content (0–7 wt%) and MDCP concentration (C=5 and 50 mg/L) on the capture efficiency (CE) of the MDCPs were studied. In all cases, when the magnetic field was applied, compared to when it was not, large increases in CE resulted; the CE increased even further when the magnetite seeds were present. The CE increased with increases in the magnetic field strength, porous polymer magnetite content and MDCP concentration. It decreased only with increases in the fluid velocity. Large magnetic field strengths were not necessary to induce MDCP capture by the seeds. A few hundred mT was sufficient. Overall, this first in vitro study of the magnetic seeding concept for IA-MDT was very encouraging, because it proved that magnetic particle seeds could serve as an effective implant for MDT systems, especially under conditions found in capillaries.  相似文献   

8.
This study refers to the effect of sodium polyacrylate concentration (1 to 5 mass %) and pH (10 to 12) on the synthesis of magnetic nanoparticles (magnetite?Cmaghemite) and their characterization by Mössbauer spectroscopy. The magnetic particles were obtained by coprecipitation method using iron chloride (II) and iron chloride (III) as precursor reagents and sodium polyacrylate as stabilizing agent. All samples showed Mössbauer broad resonance lines in typical doublet and sextets patterns of magnetite or maghemite with corresponding wide particle size distributions. The stability of magnetic particles was carried out by measuring particle sizes with dynamic light scattering (DLS). The z-average values for magnetic particles were in the range 24 to 590 nm and no significant change in size was observed on aging by leaving this material in air for 20 days. X-ray diffraction patterns showed characteristic peaks of the spinel structure and have an increase in their broadening as the pH decreases, effect that is dominated by the decrease in crystallite sizes. The nanoparticles showed to be magnetic at pH 12 and at room temperature.  相似文献   

9.
Ferromagnetic resonance temperature dependence is used to study the magnetic material in smashed head, thorax, and abdomen of Solenopsis substituta ants. These three body parts present the five lines previously observed in other social insects. The magnetic material content is slightly higher in heads with antennae than in abdomen with petiole. Isolated nanoparticle diameters were estimated as 12.5 +/- 0.1 and 11.0 +/- 0.2 nm in abdomen with petiole and head with antennae, respectively. The presence of linear chains of these particles or large ellipsoidal particles are suggested. A bulk-like magnetite particle was observed in the thorax. The Curie-Weiss, the structural-electronic and ordering transition temperatures were obtained in good agreement with those proposed for magnetite nanoparticles.  相似文献   

10.
Treatment of preformed magnetite nanoparticles with ultrasound in aqueous media with dissolved tetrachloroauric acid resulted in the formation of gold–magnetite nanocomposite materials. These materials maintained the morphology of the original magnetite particles. The loading of gold particles could be controlled by adjusting experimental parameters, including the addition of small amounts of solvent modifiers such as methanol, diethylene glycol, and oleic acid. The nanocomposite materials were magnetic and exhibited optical properties similar to pure gold nanoparticles.  相似文献   

11.
A simple design of a magnetic separator based on a membrane made of a laser-perforated ferromagnetic foil has been proposed. The separator is primarily intended for analytical and research purposes. The developed magnetic separator of the proposed design has been tested in the separation of a composite aqueous suspension of magnetite nanoparticles adsorbed on hydroxyapatite microparticles. Separation efficiency has been determined via measuring the magnetic moment by the ferromagnetic resonance method; the suspension particle size has been found by dynamic light scattering before and after the separation process. It has been shown that all the particles with a diameter of more than 500 nm are retained during separation; the magnetization of the fraction decreases twofold after passing through the membrane.  相似文献   

12.
An aqueous magnetic suspension was prepared by dispersing amphiphilic co-polymer-coated monodispersed magnetite nanoparticles synthesized through thermal decomposition of iron acetylacetonate (Fe(acac)3) in a mixture of oleic acid and oleylamine. The average diameter of narrow-size-distributed magnetite nanoparticles varied between 5 and 12 nm depending on the experimental parameters such as reaction temperature, metal salt concentration and oleic acid/oleylamine ratio. Though the as-synthesized particles were coated with oleate and were dispersible in organic solvent, their surfaces were modified using amphiphilic co-polymers composed of poly(maleic anhydride-alt-1-octadecene) and polyethylene glycol-methyl ether and made dispersible in water. Infrared spectra of the sample indicated the existence of −COOH groups on the surface for further conjugation with biomolecules for targeted cancer therapy.  相似文献   

13.
Magnetic levan was synthesized by co-precipitating D-fructofuranosyl homopolysaccharide with a solution containing Fe2+ and Fe3+ in alkaline conditions at 100 °C. The magnetic levan particles were characterized by scanning electron microscopy (SEM), magnetization measurements, X-ray diffractometry (XRD) and infrared spectroscopy (IR). Afterwards, magnetic levan particles were functionalized by NaIO4 oxidation and used as matrices for trypsin covalent immobilization. Magnetite and magnetic levan particles were both heterogeneous in shape and levan-magnetite presented bigger sizes compared to magnetite according to SEM images. Magnetic levan particles exhibited a magnetization 10 times lower as compared to magnetite ones, probably, due to the coating layer. XRD diffractogram showed that magnetite is the dominant phase in the magnetic levan. Infrared spectroscopy showed characteristics absorption bands of levan and magnetite (O-H, C-O-C and Fe-O bonds). The immobilized trypsin derivative was reused 10 times and lost 16% of its initial specific activity only. Therefore, these magnetic levan particles can be proposed as an alternative matrices for enzyme immobilization.  相似文献   

14.
A microfabricated magnetic sifter has been designed and fabricated for applications in biological sample preparation. The device enables high-throughput, high-gradient magnetic separation of magnetic nanoparticles by utilizing columnar fluid flow through a dense array (∼5000/mm2) of micropatterned slots in a magnetically soft membrane. The potential of the sifter for separation of magnetic nanoparticles conjugated with capture antibodies is demonstrated through quantitative separation experiments with CD138-labeled MACS nanoparticles. Capture efficiencies ranging from 28% to 37% and elution efficiencies greater than 73% were measured for a single pass through the sifter.  相似文献   

15.
Magnetic nanoparticles were prepared by thermal decomposition and adsorbed with lecithin by applying ultrasonication. The size and saturation magnetization changes of magnetic nanoparticles were observed with different lecithin concentration, and the maximum tolerated dose (MTD) and toxicity of magnetic fluid was investigated through a biological test. As the added lecithin concentration increased in a weight loss test by heating of magnetic particles, the thickness of lecithin-adsorption layer increased non-linearly, and the proper adsorption amount was observed in the lecithin concentration of 20% (w/v). The dispersibility and magnetic property of lecithin-adsorbed magnetic nanoparticles was the most excellent when the ultrasonic holding time was 1.5 h. Also, the maximum tolerated concentration with best cell viability was 32 μg/ml by in vitro test, and lecithin-adsorbed magnetic fluids showed the improved biocompatibility by 1.2 times compared with pure magnetite magnetic fluids.  相似文献   

16.
Preparation and characterization in vitro and in vivo of a novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide is reported in this paper. Precursory magnetic fluids stabilized with starch were prepared, in a polymeric starch matrix, by controlled chemical coprecipitation of magnetite phase from aqueous solutions. The average hydrodynamic diameter of starch-coated iron oxide nanoparticles (SIONs) was 46 nm. As a homing peptide, A54 is the most effective peptide specific to the human hepatocellular carcinoma cell line BEL-7402. Final magnetic fluids were obtained through chemical coupling of homing peptide labeled with 5-carboxyl-fluorescein (FAM-A54) and SIONs. Magnetic measurements showed the saturation magnetization value of SIONs amounted to 45 emu/g and the FAM-A54-coupled SIONs showed a good magnetic response in magnetic field. The results of experiments in vitro and in vivo showed that SIONs were endowed with specific affinity to corresponding tumor cells after coupling with FAM-A54 and the FAM-A54-coupled SIONs could be accumulated in the tumor tissue with more efficiency than individual magnetic targeting or biomolecular targeting. This novel magnetic fluid with dual function has great potential applications in diagnostics and therapeutics of human tumor such as drug targeting, magnetic hyperthermia, and magnetic resonance imaging.  相似文献   

17.
Magnetic nanoparticles are widely used in a wide range of applications including data storage materials, pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro valve applications. The purpose of the current study is to investigate the effect of a non-uniform magnetic field on bio-fluid (blood) with magnetic nanoparticles. The effect of particles as well as mass fraction on flow field and volume concentration is investigated. The governing non-linear differential equations, concentration and Navier-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. A real pulsatile velocity is utilized as inlet boundary condition. This velocity is extracted from an actual experimental data. Three percent nanoparticles volume concentration, as drug carrier, is steadily injected in an unsteady, pulsatile and non-Newtonian flow. A power law model is considered for the blood viscosity. The results show that during the systole section of the heartbeat when the blood velocity increases, the magnetic nanoparticles near the magnetic source are washed away. This is due to the sudden increase of the hydrodynamic force, which overcomes the magnetic force. The probability of vein blockage increases when the blood velocity reduces during the diastole time. As nanoparticles velocity injection decreases (longer injection time) the wall shear stress (especially near the injection area) decreases and the retention time of the magnetic nanoparticles in the blood flow increases.  相似文献   

18.
Magnetite particles with different average diameter (Dm) suitable for magnetic fluid hyperthermia (MFH) were synthesized by controlled coprecipitation technique. In this method, the reaction pH was stabilized using the pH buffer and the average particle diameter decreased with increasing reaction pH. The size-dependent magnetic behavior of the magnetite nanoparticles was studied and the optimum size range required for magnetic fluid hyperthermia (MFH) has been arrived at. Among the samples studied, the maximum specific absorption rate of 15.7 W/g was recorded for the magnetite sample with Dm of 13 nm, when exposed to an AC magnetic field strength of 3.2 kA/m and a frequency of 600 kHz. The AC magnetic properties suggested that the size distribution of the sample was bimodal with average particle size less than ∼13 nm.  相似文献   

19.
A powerful route to utilizing magnetic nanoparticles as labels in magnetic immunoassays is to exploit their non-linear response when they are exposed to a multi-frequency alternating magnetic field. We have upgraded this non-linear method allowing for the detection, discrimination and quantification of particles of two kinds when mixed together, with no need for spatial resolution. Each kind of particle is characterized by a specific magnetic signature based on d2B(H)/dH2. Appropriate data processing of the signature measured on a mixture of both particles allows for obtaining the amount of each particle. This will enable utilizing magnetic labels for multiparametric magnetic immunoassays.  相似文献   

20.
Submicron magnetic composite microspheres have been prepared by a new surfactant free controlled radical polymerization. This new approach is based on the use of diphenylethene (DPE) as radical controlling agent and no emulsifier is required. X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), etc. were conducted to characterize the magnetite particles and magnetic composite microspheres. The average size of the magnetic composite microspheres prepared by this new approach is 265 nm and the magnetite content of the composite microspheres is around 20%. Furthermore, the magnetic composite microspheres which surfaces have epoxy groups were also prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号