首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Nanocrystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x=0, 0.2, 0.4), were for the first time prepared by forced hydrolysis method. Magnetic and structural properties in these specimens were investigated. The average crystallite size is about 3.0 nm. When the zinc substitution increases from x=0 to x=0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g and the coercive field decreases from 1.22 to 0.71 T. All samples are superparamagnetic at room temperature and ferrimagnetic at temperatures below the blocking temperature. The high value of the saturation magnetization and the very thin thickness of the disorder surface layer of all samples suggests that this forced hydrolysis method is suitable not only for preparing two metal element systems but also for three or more ones.  相似文献   

2.
Co1−xZnxFe2O4 (with x varying from 0 to 0.7) nanoparticles to be used for ferrofluid preparation were prepared by chemical co-precipitation method. The fine particles were suitably dispersed in transformer oil using oleic acid as the surfactant. The magnetization (Ms) and the size of the particles were measured at room temperature. The magnetization (Ms) was found to decrease with the increase in zinc substitution. The magnetic particle size (Dm) of the fluid was found to vary from 11.19 to 4.25 nm decreasing with the increase in zinc substitution.  相似文献   

3.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

4.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

5.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

6.
This work presents a systematic investigation on the structural and magnetic properties of Co1−xZnxFe2O4 (0.5<x<0.75) nanoparticles synthesized by the chemical co-precipitation method. The X-ray diffraction analysis, the Fourier Transform Infrared (FTIR) and the Vibrating Sample Magnetometer were carried out at room temperature to study the micro-structural and magnetic properties. The X-ray measurements revealed the production of a broad single cubic phase with the crystallite size within the range of 6–10 nm. The FTIR measurements between 400 and 4000 cm−1 confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements show that the saturation magnetization and coercivity decrease by increasing the zinc content. Furthermore, the results reveal that the sample with a chemical composition of Co0.3Zn0.7Fe2O4 exhibits the super-paramagnetic behavior and the Curie point of 97 °C.  相似文献   

7.
Ni1−xCoxFe2O4 (x=0.6, 0.8 and 0.9) nanoparticles have been synthesized with various crystallite sizes depending on the thermal treatments and composition (cobalt content) using the sol-gel combustion method. The size of nanoparticles has been controlled by thermal treatment. On the other hand, the magnetic property of the ferrite has been controlled by changing the heat treatment. Morphology and particle sizes of Ni1−xCoxFe2O4 have been studied using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The presence of functional group has been identified by Fourier Transform Infrared (FTIR) spectra. From TGA-DTA studies, the weight gains of Ni1−xCoxFe2O4 nanoparticles have been observed and it might be due to capping organic molecules with oxygen at temperatures above 200 °C. Magnetic properties of Ni1−xCoxFe2O4 particles have been analysed using VSM and it is found that saturation magnetization (Ms) has increased with particle size and has coercivity (Hc) increased initially and then decreased. The Ms and Hc values decreased with the increase of content of cobalt in Ni1−xCoxFe2O4.  相似文献   

8.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

9.
The structural and magnetic properties of Mn substituted Ni0.50−xMnxZn0.50Fe2O4 (where x=0.00, 0.10 and 0.20) sintered at various temperatures have been investigated thoroughly. The lattice parameter, average grain size and initial permeability increase with Mn substitution. Both bulk density and initial permeability increase with increasing sintering temperature from 1250 to 1300 °C and above 1300 °C they decrease. The Ni0.30Mn0.20Zn0.50Fe2O4 sintered at 1300 °C shows the highest relative quality factor and highest initial permeability among the studied samples. The initial permeability strongly depends on average grain size and intragranular porosity. From the magnetization as a function of applied magnetic field, M(H), it is clear that at room temperature all samples are in ferrimagnetic state. The number of Bohr magneton, n(μB), and Neel temperature, TN, decrease with increasing Mn substitution. It is found that Mn substitution in Ni0.50−xMnxZn0.50Fe2O4 (where x=0.20) decreases the Neel temperature by 25% but increases the initial permeability by 76%. Possible explanation for the observed characteristics of microstructure, initial permeability, DC magnetization and Neel temperature of the studied samples are discussed.  相似文献   

10.
Magnetic nanocomposites of Sm(Co1−xFex)5/Fe3O4 (x≈0.1) with the core/shell type structure were successfully fabricated using a two-step polyol process, where as-prepared SmCo5(1−x) nanoparticles were used as seeds for the ferrite coating. The core/shell composites are quite stable in air and show a typical hysteric behavior of single component, yielding an enhanced coercivity of 2.2 kOe with a saturated magnetization of 130 emu/g at 5 T. The magnetization data clearly reveal the presence of effective exchange coupling between the hard-magnetic Sm(Co1−xFex)5 core and soft-magnetic Fe3O4 shell, suggestive of a single-phase structure rather than a distinctive two-phase one.  相似文献   

11.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

12.
Magnetic materials such as NixZn(1−x)Fe2O4 have resonant frequency in high frequency; therefore, they are more useful especially in microwaves. The NixZn(1−x)Fe2O4 was prepared by the chemical coprecipitation method using citrate precursors, and the fritless thick film was screen printed on alumina substrates. The composition-dependent permeability and permittivity in the high frequency 8–12 GHz are investigated. Using the overlay technique on Ag-thick-film patch antenna, the change in reflectance and transmittance has been measured. The NixZn(1−x)Fe2O4 thick film, when used as overlay on Ag-thick-film patch antenna, changes the resonance characteristics. The changes in resonance frequency, reflectance and transmittance have been used to calculate the permeability and permittivity of the thick film. Zinc-concentration-dependent changes are obtained.  相似文献   

13.
A series of CoxPd1−x   (x=0.37–0.85x=0.370.85) nanowire arrays have been successfully deposited in a single Co2+/ Pd2+=20:1 solution by applying the various depositing potentials. We found that the nanowires are the composites of CoPd alloy with some Co and Pd clusters, but the overall structure of the composite wires followed the binary phase relation of Pd–Co. The existence of Pd content makes the nanowires structured in FCC phase, except for Co0.85Pd0.15 sample in which some HCP Co phase coexists with the dominating FCC phase. Between Co-rich and Pd-rich nanowires, we found that the optimized composition for CoxPd1−x nanowire is around Co0.73Pd0.27 in which the coercivity (Hc) and squareness (Mr/Ms) have their maximum values consistently.  相似文献   

14.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

15.
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−yzO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.  相似文献   

16.
In attempt to characterise the magnetic ordering in the whole composition range of the Cd1−xZnxCr2Se4 system, various magnetic measurements were performed on both crystalline and polycrystalline samples with 0?x?1. The magnetic properties of the system are typical of a ferromagnet below x=0.4 and of a complex antiferromagnet one above x=0.6. In this work the intermediate region was carefully studied. The variations of both M(T) and χac at low fields suggest that transitions from ferromagnetic to Gabay–Toulouse ferromagnetic-spin-glass mixed phase at low temperature occur in the range 0.41?x?0.58. The high-temperature susceptibility measurements show that for the whole concentration range the system obeys Curie–Weiss laws. The results can be explained by the coexistence of competing interactions (ferromagnetic between nearest neighbours and antiferromagnetic between higher order neighbours) and disorder due to the random substitution between zinc and cadmium ions in the tetrahedral sites of the spinel lattice. An experimental magnetic phase diagram of the system is established.  相似文献   

17.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

18.
Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co(1−x)ZnxFe2O4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co(1−x)ZnxFe2O4 nanoparticles. X-ray diffraction patterns of Co(1−x)ZnxFe2O4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe2O4. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co(1−x)ZnxFe2O4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM, respectively, decrease with the increase of the Zn at%. Finally, our magnetic nanoparticles are not very hard magnetic materials given that the hysteresis loop is small and for this reason Co(1−x)ZnxFe2O4 nanoparticles are considered as soft magnetic material.  相似文献   

19.
We present an investigation of properties of CoxZn1−xFe2O4 (x=0.0-1.0) nanoparticles synthesized by a polyethylene glycol (PEG)-assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating scanning magnetometry (VSM) were used to characterize the structural, morphological and magnetic properties. The particle size obtained from TEM and XRD are consistent with each other. It was observed that the lattice constant for each composition decreases with increasing Co substitution and follows Vegard's law. Magnetization measurements show that while the materials with high Zn substitution are superparamagnetic at room temperature, they are ferromagnetic at temperatures lower than the blocking temperature. The materials with less Zn substitution are ferromagnetic below room temperature. Magnetizations and the coercivities of the samples decrease with the Zn substitution. The resultant overall magnetic behavior of the superparamagnetic samples are found to be considerably different than that of conventional superparamagnetic systems due to the antiferromagnetic interactions both in intra- and inter-cluster spins, and size (effective moment) distribution of the particles.  相似文献   

20.
Superparamagnetic nanoparticles of the spinel ferrite four-element system Mn1−xZnx[Fe2−yLy]O4 (where L:Gd3+, La3+, Ce3+, Eu3+, Dy3+, Er3+,Yb3+) were synthesized by the co-precipitation method. The magnetic moments of the 10 nm diameter nanoparticles were comparable to the ones of Fe3O4 nanoparticles. A comparatively low TC (∼52–72 °C) was observed for some of the compositions. The heating mechanism of the superparamagnetic particles in the AC magnetic field at radiofrequency range is discussed and especially the absence of the hysteresis loop in the M–H curve at room temperature. One possible explanation—spontaneous particle agglomeration—was experimentally verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号