首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co1−xCrx   alloy nanowires with 0.01<x<0.930.01<x<0.93 were fabricated by electrodeposition in a porous alumina membrane from an electrolyte containing Co and Cr ions. The composition, structure and magnetic properties of the nanowires have been characterized. Cobalt-rich nanowires were electrodeposited at a potential of −1.0 V relative to Ag/AgCl and chromium-rich nanowires were deposited beyond −3.5 V. The optimized processing conditions include hydrogen annealing to give hysteresis loops for the Co80Cr20 nanowires with coercivity of up to 200 mT and squareness of up to 0.95. Magnetization of the Co80Cr20 nanowire is 77 A m2 kg−1 and the energy product of the arrays is 35 kJ m−3.  相似文献   

2.
CoxFe3−xO4 nanocrystalline films (x=0.2-0.8x=0.2-0.8) on SiO2 substrates were prepared by a sol–gel method. The microstructural and magnetic properties of samples were measured by an X-ray diffractometer (XRD) and a vibrating sample magnetometer (VSM), respectively. Atomic force microscopy (AFM) was used to investigate the surface image of the sample. The measurement results of XRD at room temperature show that the pure spinel structure of the film could be obtained at x=0.8x=0.8. The magnetic measurements reveal the magnetic properties of the samples depend strongly on Co2+ ions content, and the optimal parameters of the saturation magnetization and coercivity in CoxFe3−xO4films are obtained at x=0.8x=0.8. Here the coercivity reaches 1.954 kOe. The average grain sizes of the film are less than 30 nm obtained from the microscopy images. The situ measurement at high temperatures of range from 293 to 773 K shows that the microstructures of Co0.8Fe2.2O4 film have good thermal stabilization.  相似文献   

3.
Polycrystalline samples of Laves-phase alloys Dy(Co1−xFex)2(x=0x=0, 0.02,0.04,0.06,0.08) have been prepared by arc-melting method. No first order phase transition was observed for samples with x≠0x0. With the increase of Fe content, the Curie temperature increases greatly, while the calculated magnetic entropy change, ΔSM, shows an obvious decrease with a broader peak. The origin of the magnetocaloric effect in Dy(Co1−xFex)2 alloys has been discussed.  相似文献   

4.
Magnetic and optical properties of FexCo3−xO4 thin films grown by sol–gel method have been investigated as the Fe composition (x  ) increases from 0 to 2. X-ray diffraction measurements revealed that the normal- and inverse-spinel phases coexist for 0.76?x?0.930.76?x?0.93. The normal-spinel phase is dominant below x=0.76x=0.76 while the inverse-spinel phase above x=0.93x=0.93. The lattice constant of the inverse-spinel phase is found to be larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. The FexCo3−xO4 films containing the inverse-spinel phase exhibit net magnetization that increases with increasing x  . Conversion electron Mössbauer spectrum measured on the x=0.93x=0.93 sample showed that Fe2+ ions prefer the octahedral sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates a dominance of the normal-spinel phase for low x in which Fe3+ ions mostly occupy the octahedral sites. Observation of a crystal-field transition at 1.6 eV originating from tetrahedral Fe3+ ion confirms the existence of the inverse-spinel phase for high x.  相似文献   

5.
The gadolinium-based manganite GdMnO3 of perovskite structure has been partially substituted at the manganese site by transition metal elements Me like Cu, Ni and Co, leading to a general formula GdMexMn1−xO3, in which different magnetic entities (e.g., Gd3+, Cu2+, Ni2+, Co2+, Co3+, Mn3+, Mn4+) can coexist, depending on charge equilibrium conditions. For divalent cations such as Cu2+ and Ni2+, the solid solution extends from x  (Me)=0–0.5, with O-type orthorhombic symmetry (a<c/√2<b)(a<c/2<b). When the substituting element is cobalt, the solid solution extends over the whole range [0?x  ?1], changing from O′-type symmetry (c/√2<a<b)(c/2<a<b) to O-type for x>0.5. In this latter case, the synthesis is performed under oxygen flow, which allows the cobalt ion to take a 3+ oxidation state.  相似文献   

6.
FCC (Fe55Ni45)1−xCx   supersaturated solid solution was prepared in a wide concentration range (0?x?0.9)(0?x?0.9) by mechanical alloying of nanocrystalline Fe55Ni45 with graphite. The lattice constant of Fe55Ni45 increases linearly with increasing carbon content up to x=0.25x=0.25. At the same time, it is found that the magnetic moment per metal atom (Fe, Ni) decreases linearly with increasing carbon content for 0?x?0.250?x?0.25 with a slope of 1.2 μB/at. For high carbon content, x?0.5x?0.5, it is observed that the decrease of lattice constant and increase of moment per metal atom (Fe, Ni) with increasing C content, indicates that the dissolution of carbon is hindered by the high-volume fraction of graphite in the initial powder mixture. The complete amorphization of x=0.5x=0.5 does not occur after the extended ball milling. The alloying effect of carbon on the magnetization is compared with other metalloid B, P, and Si in Fe- and Ni-based binary system.  相似文献   

7.
8.
Mg0.7Zn0.3SmxFe2−xO4 ferrites were prepared by the solid-state reaction method and were characterized by X-ray diffraction and magnetization measurements. A single spinel phase was obtained in the range 0.00?x?0.030.00?x?0.03. The lattice parameter was found to increase at x=0.01x=0.01 and then decreases up to x=0.03x=0.03, which may indicate a distortion in the spinel lattice. The saturation magnetization was found to decrease with the increase in x up to 0.04, due to the replacement of the Fe3+ ions by the Sm3+ ions.  相似文献   

9.
Si1−xMnx   (x?0.22x?0.22) thin films were grown by using a thermal evaporator, and their magnetic and electrical properties were investigated. The Si1−xMnx semiconductors are amorphous when Mn concentration is 9.0 at% and less. The electrical resistivities of amorphous Si1−xMnx   (x?0.09x?0.09) semiconductor thin films are in the range of 9.86–6.59×10−4 Ω cm at room temperature and decrease with increasing Mn concentration. The amorphous Si1−xMnx   (x?0.09x?0.09) semiconductor thin films are p-type and hole densities are 3.73×1018–1.33×1022 cm−3 at room temperature. Low temperature magnetization characteristics reveal that amorphous Si1−xMnx   (x?0.09x?0.09) semiconductor thin films are paramagnetic.  相似文献   

10.
Magnetic properties of granular (Co40Fe40B20)x(SiO2)1−x   thin films (x=0.37-0.53x=0.37-0.53) have been studied by ferromagnetic resonance (FMR) technique. Samples have been prepared by ion-beam deposition of Co–Fe–B particles and SiO2 on sitall ceramic substrate. The FMR measurements have been done for different orientations of DC magnetic field with respect to the sample plane. It was found that the deduced value of effective magnetization from FMR data of the thin granular film is reduced by the volume-filling factor of the bulk saturation magnetization. The overall magnetization changes from 152 to 515 G depending on the ratio of the magnetic nanoparticles in the SiO2 matrix. From angular measurements an induced in-plane uniaxial anisotropy has been obtained due to the preparation of the film conditions as well.  相似文献   

11.
The linear and nonlinear AC susceptibility as a function of temperature were measured on LaMn1−xCuxO3 compounds for x=0.05–0.30x=0.050.30. Samples with x?0.10x?0.10 exhibit paramagnetic to ferromagnetic transitions followed by low temperature spin glass like transition. The linear susceptibility exhibits strong frequency dependence and is analyzed in terms of standard theoretical model for spin glass. The magnitude and peak temperature of nonlinear susceptibility vary with AC field amplitudes. They are analyzed in terms of critical behaviour in the vicinity of spin glass transition temperature and the critical exponent is found to be 3.2.  相似文献   

12.
Melted alloys of the FexMn0.65−xAl0.35 disordered system, 0.25?x?0.65, were experimentally studied by Mössbauer spectrometry, vibrating sample magnetometry and AC magnetic susceptibility. All the alloys exhibit the BCC structure with a nearly constant lattice parameter (2.92 Å). Mössbauer studies at room temperature (RT) show that in the 0.25 ?x?0.45 range the alloys are paramagnetic (P) while in the 0.50?x?0.65 range, they are ferromagnetic. At 77 K, Mössbauer studies show that the alloy with x=0.25x=0.25 presents weak magnetic character that is consistent with an antiferromagnetic (AF) behavior due to the high Mn content, while those with 0.30?x?0.40 are paramagnetic, and those in the 0.45?x  ?0.65 range are ferromagnetic (F) with a mean field increasing with the Fe content. Hysteresis cycles at RT prove the paramagnetic character of the alloys between x=0.25x=0.25 and 0.40 and the ferromagnetic character for x?0.45x?0.45. Complementary measurements using AC magnetic susceptibility permit a magnetic phase diagram to be proposed, with the P phase for high temperature and all the compositions, the AF phase for low Fe content and at low temperature, the F phase for high Fe content above RT and the spin glass phase for all the compositions and at temperatures lower than 46 K. In addition, the mean field renormalization group (MFRG) method, applied to a random competitive and site dilute Ising model with nearest-neighbor, gives rise to magnetic phase diagram, which fairly agrees with previous experimental one.  相似文献   

13.
The structural and magnetic properties of Nd1−xTbxFe10.5Mo1.5 (x=0x=0, 0.2, 0.4, 0.6, 0.8, 1.0) compounds have been investigated by means of X-ray diffraction and magnetic measurements. All the investigated compounds crystallize in the tetragonal ThMn12-type structure with I4/mmm space group. The lattice parameters a, c and the unit-cell volume V decrease with increasing x. The Curie temperatures TC are almost independent x. There exists a unique spin-reorientation transition for the end compositions of Nd1−xTbxFe10.5Mo1.5 compounds with x=0x=0 and x=1x=1, while two spin-reorientation transitions are observed for x=0.2–0.8x=0.20.8. The room-temperature magnetocrystalline anisotropy of Nd1−xTbxFe10.5Mo1.5 compounds changes from uniaxial to planar with increasing x content. Based on magnetic measurements, a magnetic phase diagram of Nd1−xTbxFe10.5Mo1.5 compounds is constructed. By minimizing the magnetocrystalline anisotropy energy, a theoretical magnetic phase diagram for the Nd1−xTbxFe10.5Mo1.5 system is derived, showing a reasonable agreement with the observations.  相似文献   

14.
The crystal structure and magnetocaloric effect of Gd5SixSn4−x   (with x=2.4x=2.4, 2.6 and 2.8) alloys were studied by means of X-ray power diffraction (XRD) and magnetic measurements. From the XRD results, these alloys adopt a Gd5Si4-type structure for x=2.8x=2.8, Gd5Si4-type and Gd5Si2Ge2-type mixed structures for x=2.4x=2.4 and 2.6, while some minor phases can also be found. The Curie temperatures of the Gd5SixSn4−x increases gradually when x increases from 276 K for x=2.4x=2.4, to 301.5 K for x=2.8x=2.8. Magnetic entropy changes of these alloys at a magnetic field change of 0–1.8 T are 1.88, 2.26 and 1.69 J/kg K for x=2.4x=2.4, 2.6 and 2.8, respectively. The temperature-dependent XRD analysis shows that there is no crystallographic transition for these alloys, which can explain their low magnetic entropy changes.  相似文献   

15.
The effect of Co substitution on the structure and magnetic properties of mechanically alloyed Pr14Tb2Fe76−xCoxC6B2 and Pr16Fe76−xCoxC6B2 (x=0–20x=020) alloys has been studied systematically. The main phase in the alloys is Pr2Fe14C-type carbide, coexisting with a small amount of α-Fe and rare-earth-rich phases. In addition to the increasing of the Curie temperature of the Pr2Fe14C-type phase, Co substitution can affect the magnetic properties by adjusting the α-Fe fraction of the alloys. The increase of both coercivity and remanence has been realized in a certain composition range. This increase may be attributed mainly to the enhancement of the effective anisotropy constant KeffKeff of the magnets due to the reduced α-Fe fraction with a small Co addition. The highest coercivity iHc of 20.3 kOe and the optimum energy product (BH)max of 10.3 MG Oe have been obtained for the Pr14Tb2Fe69.5Co6.5C6B2 alloy.  相似文献   

16.
17.
Under various amplitude of AC magnetic fields domain wall motion is the main mechanism in the magnetization process. This includes domain wall bulging and domain wall displacing. In this paper complex permeability-frequency spectra of (Fe1−xCox)73.5Cu1Nb3Si13.5B9 (x=0,0.5x=0,0.5) nanocrystalline alloys were measured as a function of the AC magnetic field, ranging from 0.001 to 0.04 Oe. Obvious changes have been found in complex permeability spectra for alloy x=0x=0 with the change of the amplitude of AC magnetic field, but variation of AC magnetic field has little effect on complex permeability spectra for alloy x=0.5x=0.5. This is attributed to the increased pinning field after substitution of Fe with Co in Fe73.5Cu1Nb3Si13.5B9 nanaocrystalline alloy.  相似文献   

18.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

19.
Bi doped lanthanum manganites with the chemical composition of La0.67−xBixCa0.33MnO3 (x=0x=0, 0.05, 0.1, 0.2) were prepared by the standard solid-state process. The Curie temperatures were measured to be 267 K for x=0x=0, 248 K for x=0.05x=0.05, 244 K for x=0.1x=0.1 and 229 K for x=0.2x=0.2 samples. It was found that the maximum value of the magnetic entropy change ∣ΔSm∣ has reached the highest value of 6.08 J/kg K at 3 T for the composition with x=0.05x=0.05. Nearly the same maximum entropy change was observed for the x=0x=0 sample. A large decrease in the magnitude of the entropy change was observed for the x=0.2x=0.2 sample.  相似文献   

20.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号