首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Temporally resolved measurements of transient phenomena in turbulent flames, such as extinction, ignition or flashback, require cinematographic sampling of two-dimensional scalar fields. Hereby, repetition rates must exceed typical flame-inherent frequencies. The high sensitivity planar laser-induced fluorescence (PLIF) has already proved to be a practical method for scalar imaging. The present study demonstrates the feasibility of generating tuneable narrowband radiation in the ultraviolet (UV) spectral range at repetition rates up to 5 kHz. Pulse energies were sufficiently high to electronically excite hydroxyl radicals (OH) produced in a partially-premixed turbulent opposed jet (TOJ) flame. Red-shifted fluorescence was detected two-dimensionally by means of an image-intensified CMOS camera. Sequences comprising up to 4000 frames per run were recorded. Besides statistically stationary conditions, extinction of a turbulent flame due to small Damköhler numbers is presented showing the potential of the technique.  相似文献   

3.
Simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) utilizing R-branch transitions in the C-X (0,0) band were performed at a 10-kHz repetition-rate in a turbulent premixed flame. The CH lines at 310.690?nm (from the R-branch of the C-X band) used here have greater efficiency than A-X and B-X transitions, which allows for high-framerate imaging with low laser pulse energy. Most importantly, the simultaneous imaging of both CH PLIF and PIV is enabled by the use of a custom edge filter, which blocks scattering at the laser wavelength (below ~311?nm) while efficiently transmitting fluorescence at longer wavelengths. The Hi-Pilot Bunsen burner operated with a turbulent Reynolds number of 7900 was used to demonstrate simultaneous PIV and CH PLIF utilizing this filtered detection scheme. Instances where pockets of products were observed well upstream of the mean flame brush are found to be the result of out-of-plane motion of the flame sheet. Such instances can lead to ambiguous results when interpreting the thickness of reaction layers. However, the temporally resolved nature of the present diagnostics facilitate the identification and proper treatment of such situations. The strategy demonstrated here can yield important information in the study of turbulent flames by providing temporally resolved flame dynamics in terms of flame sheet visualization and velocity fields.  相似文献   

4.
Knowledge of in-situ fuel distributions in practical combustion devices, such as internal combustion engines, is crucial for research and devlopment purposes. Numerous imaging techniques, mostly based on laser-induced fluorescence (LIF), have been developed and yield high levels of 2-D spatial information, but generally lack the temporal resolution (frame rates) necessary to resolve important timescales at sub-millisecond levels for sustained times. A planar LIF technique for quantitatively visualizing fuel distribution is presented which gives not only high spatial resolution, but also high temporal resolution. Using a high-speed CMOS camera, a lens-coupled image intensifier, and frequency-tripled diode-pumped Nd:YAG laser allows for capturing LIF images of biacetyl that is used as a fluorescence tracer at 12 kHz (one crank-angle resolution at 2000 RPM) for hundreds of consecutive engine cycles. The LIF signal strength of biacetyl doped in iso-octane is shown to vary substantially over a wide range of temperatures and pressures. The low absorption coefficient at 355 nm and a longpass filter in the detection path exclude bias errors due to laser beam attenuation and fluorescence trapping. An intensifier gate time of 350 ns is shown to suppress the detection of phosphorescence signals under practical conditions. An example for a quantitative high-speed measurement of fuel concentration at varying pressure and temperature conditions is presented. Quantitative equivalence ratio maps are shown for the fuel injection event within a single cycle in a spark-ignition direct-injected engine, showing the ability of the technique to not only reveal static fuel concentration maps, but also the motion of the fuel cloud along with very steep gradients. Spray velocities determined from the moving fuel cloud are in agreement with previous particle image velocimetry measurements.  相似文献   

5.
We describe an approach of imaging the dynamic interaction of the flamefront and flowfield. Here, a diode-pumped Nd:YLF laser operating at 5 kHz is used to pump a dye laser, which is then frequency doubled to 283 nm to probe flamefront OH, while a dual cavity diode-pumped Nd:YAG system produces pulse-pairs for particle image velocimetry (PIV). CMOS digital cameras are used to detect both planar laser-induced fluorescence (PLIF) and particle scattering (in a stereo arrangement) such that a 5 kHz measurement frequency is attained. This diagnostic is demonstrated in lifted-jet and swirl-stabilized flames, wherein the dynamics of the flame stabilization processes are seen. Nonperiodic effects such as local ignition and/or extinction, lift-off and flashback events, and their histories can be captured by this technique. As such, this system has the potential to significantly extend our understanding of nonstationary combustion processes relevant to industrial and technical applications. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

6.
The focus of this paper is on the mixing of a conserved passive scalar for Sc = 1 (Sc is the Schmidt number) in axisymmetric turbulence for which the initial injections of turbulent kinetic energy and scalar variance are similar. Two confined-opposed-jets (COJ) are experimentally studied through simultaneous PIV (particle image velocimetry) and PLIF (planar laser induced fluorescence) measurements, for different flow regimes. One-point transport equation for the scalar variance is assessed through experimental data, along the common axis of the two opposed jets, and different physical phenomena are revealed (production, diffusion, dissipation). The production of scalar variance is equilibrated by the diffusion term (~75%) and the mean dissipation of the scalar variance (~25%). To further assess the scalar behaviour at each scale in this anisotropic, but axisymmetric, flow, a scale-by-scale scalar variance budget equation is derived for axisymmetric turbulence. This equation reduces to Yaglom's 4/3 law, under additional restrictions. The equation is assessed through experimental data, in the impingement region between the two COJ. In particular, the anisotropic energy transfer along different directions is quantified. It is shown that for scales smaller than the size of the central region, Δ, the cascade of the scalar variance is completely inhibited, independently of the particular direction. For scales larger than Δ, the apparent aspect of the energy transfer is that of an inverse cascade, with positive values of the scalar variance transfer. Nonetheless, inhomogeneity of the flow and mixing at those scales is directly responsible for these positive values.  相似文献   

7.
8.
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than “conventional” laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.  相似文献   

9.
 利用高速摄影机直接观测了激波加载下球形气泡的演化过程。采用白色的烟雾颗粒对气泡内透明的测试气体进行染色,直接观察到了气泡界面。通过对平面弱激波加载下轻气体气泡和重气体气泡进行研究,成功验证了轻气体气泡和重气体气泡演化过程中出现的典型界面结构,获得了弱激波加载轻气体气泡中背风涡环的环状几何结构。运用相关方法分析了轻气体气泡实验初期的流场分布,得到的结果与理论分析结果吻合得很好,对于此类实验的数据处理具有一定的启发意义。同时,实验中使用的烟雾颗粒法为今后在球形气泡实验中引入更为精确的平面激光诱导荧光技术(PLIF)、激光粒子图像测速技术(PIV)等实验测试系统提供了布撒示踪粒子的范例。  相似文献   

10.
The goal of this paper is to describe essential criteria for image analysis of planar laser-induced fluorescence (PLIF) signals. A new image file conversion method is introduced and some typical illustrative examples showing the potential applications of the method in PLIF experiments are presented. Analysis of row, column, and total pixel counts, and the dark noise related to an image are discussed. Image segmentation, averaging and background correction can be easily done by the reported method. In our analysis it is straightforward to inspect the pixel counts and check for saturation of the camera sensors. It is also feasible to obtain a particular row or column for interpretation and it offers an easy way to check the validity of the captured images. Furthermore, the method offers a sensitive technique to check pulse-to-pulse variation of the excitation laser by using frame-to-frame fluorescence image data comparison, which is more illustrative than power checking by other means. The overall results show that the developed conversion method reported here can be effectively used to obtain more in-depth and quantitative information out of the raw data for the PLIF experiments.  相似文献   

11.
Laser-induced fluorescence imaging of hydroxyl radicals has been an important tool in combustion research for more than twenty years. More recently, high frame rate imaging of hydroxyl radicals has been demonstrated using Nd:YAG-pumped dye laser systems. This work describes how a high repetition rate frequency-quadrupled Nd:YLF laser emitting at 263 nm can be used for laser-induced fluorescence imaging of hydroxyl radicals with less complexity. Hydroxyl radicals are excited in the A–X (2,0) band and redshifted fluorescence emission is detected with an image intensified CMOS camera at kHz frame rates. Furthermore, a strategy for high-speed temperature imaging is described.  相似文献   

12.
The requirements on high efficiency and low emissions of internal combustion engines (ICEs) raise the research focus on advanced combustion concepts, e.g., premixed-charge compression ignition (PCCI), partially premixed compression ignition (PPCI), reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), gasoline compression ignition (GCI) etc. In the present study, an optically accessible engine is operated in PPC mode, featuring compression ignition of a diluted, stratified charge of gasoline-like fuel injected directly into the cylinder. A high-speed, high-power burst-mode laser system in combination with a high-speed CMOS camera is employed for diagnostics of the autoignition process which is critical for the combustion phasing and efficiency of the engine. To the authors’ best knowledge, this work demonstrates for the first time the application of the burst-system for simultaneous fuel tracer planar laser induced fluorescence (PLIF) and chemiluminescence imaging in an optical engine, at 36?kHz repetition rate. In addition, high-speed formaldehyde PLIF and chemiluminescence imaging are employed for investigation of autoignition events with a high temporal resolution (5 frames/CAD). The development of autoignition together with fuel or CH2O distribution are simultaneously visualized using a large number of consecutive images. Prior to the onset of combustion the majority of both fuel and CH2O are located in the recirculation zone, where the first autoignition also occurs. The ability to record, in excess of 100 PLIF images, in a single cycle brings unique possibilities to follow the in-cylinder processes without the averaging effects caused by cycle-to-cycle variations.  相似文献   

13.
High-speed particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) techniques are combined to acquire flow field and fuel concentration in a spray-guided spark-ignited direct-injection (SG-SIDI) engine under motored and fired operation. This is a crucial step to enable studies that seek correlations between marginal engine operation (misfires or partial burns) and local, instantaneous mixture and flow conditions. Correlated flow and fuel data are extracted from a 4 mm×4 mm sub-region directly downstream the spark plug to characterize the in-cylinder conditions next to the spark plug during the spray and ignition event. Values of equivalence ratio, velocity magnitude, shear strain rate, and vorticity all increase during the spray event and decrease an order of magnitude during the duration of the spark event.  相似文献   

14.
This study investigates the low- and high-temperature ignition and combustion processes in a high-pressure spray flame of n-dodecane using simultaneous 50-kHz formaldehyde (HCHO) planar laser-induced fluorescence (PLIF) and 100-kHz schlieren imaging. The PLIF measurements were facilitated through the use of a pulse-burst-mode Nd:YAG laser, producing a 355-nm pulse-train with 300 pulses at 70 mJ/pulse, separated by 20-µs, in a 6-ms burst. The high-speed HCHO PLIF signal was imaged using a non-intensified CMOS camera with dynamic background emission correction. The acquisition rate of this HCHO PLIF diagnostic is unique to the research community, and when combined with high-speed schlieren imaging, provides unprecedented opportunity for analysis of the spatiotemporal evolution of fuel jet penetration and low- and high-temperature ignition processes relevant to internal combustion engine conditions. The present experiments are conducted in the Sandia constant-volume preburn vessel equipped with a new Spray A injector. The influences of ambient conditions are examined on the ignition delay times of the two-stage ignition events, HCHO structures, and lift-off length values. Consistent with past studies of traditional Spray A flames, the formation of HCHO is first observed in the jet peripheries where the equivalence ratio (Φ) is expected to be leaner and hotter and then grows in size and in intensity downstream into the jet core where Φ is expected to be richer and colder. The measurements demonstrate that the formation and propagation of HCHO from the leaner to richer region leads to high-temperature ignition events, supporting the identification of a phenomenon coined “cool-flame wave propagation” during the transient ignition process. Subsequent high-temperature ignition is found to consume the previously formed HCHO in the jet head, while the formation of HCHO persists in the fuel-rich zone near the flame base over the entire combustion period.  相似文献   

15.
Time-resolved particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF), both at 5 kHz, were applied simultaneously on extinguishing turbulent opposed jet flames. This repetition rate allowed tracking of transient extinction events in turbulent combustion. The additional information acquired about time history enabled a study of the evolution of vortex-flame interactions leading to extinction from individual events. A newly introduced multidimensional conditioning technique to avoid spatial- and temporal-smearing of important flow field information was developed in order to compare individual extinction events in a meaningful, statistical manner. The conditional statistics show that vortices tend to align around the flame and generate regions of high strain in the region where the flame is about to extinguish.  相似文献   

16.
We report a new imaging diagnostic suitable for measurements of infrared-active molecules, namely infrared planar laser-induced fluorescence (IR PLIF), in which a tunable infrared source is used to excite vibrational transitions in molecules and vibrational fluorescence is collected by an infrared camera. A nanosecond-pulse Nd:YAG-pumped KTP/KTA OPO/OPA system is used to generate 12 mJ of tunable output near 2.35 μm which excites the 2ν band of carbon monoxide (CO); fluorescence resulting from excited CO is collected at 4.7 μm by using an InSb focal plane array. Quantitative, high-SNR PLIF imaging of gas-phase CO is demonstrated at a 10-Hz acquisition rate with a minimum detection limit of 1350 ppm at 300 K. Received: 30 July 1999 / Published online: 16 September 1999  相似文献   

17.
The present work focuses on the measurements of instantaneous concentration fields of a passive scalar due to an impinging round jet injection into a liquid filled rectangular tank. Simultaneous measurements of velocity and passive scalar concentration fields have been conducted by using Particle Image Velocimetry (planar 2C and 3C PIV) and Planar Laser Induced Fluorescence (PLIF) techniques. The mixing injection behavior is analyzed for several injection values of depth and flow rate. Results showed the classical developing and self-similar regions of the jet, the mixing layer and the coupled concentration and velocity fields due to impingement. Finally, 3C PIV reveals a 3D flow jet structure which seems to be a swirl that does not disturb 2D analysis.  相似文献   

18.
A combination of particle imaging velocimetry (PIV), particle tracking velocimetry (PTV) and planar laser-induced fluorescence (PLIF) was employed to measure conditional flow field statistics in partially premixed turbulent opposed jet flames. These flames were observed to be very sensitive to excessive seeding of particles. Since flames close to extinction were studied, very low seeding densities were required to prevent impact on the extinction behavior of the flame, and conventional PIV algorithms would have resulted in poor spatial resolution. An improved PIV algorithm was developed, in connection with a PTV procedure used in high-temperature regions of low seed density, and revealed high in-plane resolution up to 300 μm. The PIV/PTV algorithm slightly under-resolved the Kolmogorov scales for the present cases, whereas Batchelor scales were fully resolved in-plane by the simultaneous OH PLIF. In the data processing, transient OH contours obtained from single-shots were used to define flame-fixed coordinates. Conditional velocities, out-of-plane vorticity, 2D dilatation, and both axial and radial strain were processed from the data. The conditional statistics show that vorticity is preferably generated close to the reaction zone, particularly at off-centerline positions. Hence, flow-chemistry interactions could be identified directly in the region of the reaction zone. This finding was also supported by qualitative high speed Mie scattering/chemiluminescence imaging that permitted temporally resolved visualization of the formation of eddies just upstream of the luminous flame areas.  相似文献   

19.
In this study, we describe the development of two-dimensional, high repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent flows. In particular, we report what we believe to be the first sets of high-speed 2D Rayleigh scattering images in turbulent non-reacting jets, yielding temporally correlated image sequences of the instantaneous mixture fraction field. Results are presented for turbulent jets of propane issuing into a low-speed co-flow of air at jet-exit Reynolds numbers of 10,000, 15,000, and 30,000 at various axial positions downstream of the jet exit. The quantitative high-speed mixture fraction measurements are facilitated by the use of a calibrated, un-intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition rate pulse-burst laser system (PBLS) at Ohio State, which yields output energies of ∼200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The quality, accuracy, and resolution of the imaging system and the resulting image sets are assessed by (1) comparing the mean mixture fraction results to known scaling laws for turbulent jets, (2) comparing instantaneous images/mixture fraction profiles acquired simultaneously with the high-speed CMOS camera and a well-characterized, high-quantum efficiency CCD camera, and (3) comparing statistical quantities such as the probability density function of the mixture fraction results using the high-speed CMOS camera and the CCD camera. Results indicate accurate mixture fraction measurements and a high potential for accurately measuring mixture fraction gradients in both time and space.  相似文献   

20.

Abstract  

Systems with closed side branches are liable to an excitation of sound known as cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been ascertained by phase-averaged pressure measurements in previous research, while the relation between sound propagation and the flow field is still unclear due to the difficulty of detecting the instantaneous velocity field. It is possible to detect the two-dimensional instantaneous velocity field using high time-resolved particle image velocimetry (PIV). In this study, flow-induced acoustic resonance in a piping system containing closed side branches was investigated experimentally. A high time-resolved PIV technique was used to measure the gas flow in a cavity. Airflow containing oil mist as tracer particles was measured using a high-frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side branches is the first rudimentary study to visualize the fluid flow two-dimensionally in a cross-section using high time-resolved PIV, and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact, with some phase differences between them, and the relation between the fluid flows was clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号