首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zero-valent iron-modified Degussa P25-TiO2/ZnO nanocomposites (denoted as P25/Fe0/ZnO) were designed and prepared via Fe0 impregnation of P25-TiO2/ZnO and then were employed in the visible-light photocatalytic degradation of p-nitrophenol (PNP) in the presence of [K2S2O8]. Central composite design was applied for response surface modeling (RSM) to understand the influence of selected factors (pH, [Fe0] wt% and [K2S2O8] concentration) on the degradation of PNP and to determine the interaction between the factors. The maximal PNP degradation efficiency (86.9%) was obtained with P25/1.5 wt% Fe0/ZnO at 3 mg/L of [K2S2O8] concentration and pH 7.5. In addition, the RSM showed a satisfactory correlation between the experimental and predicted values of PNP degradation. The P25/Fe0/ZnO photocatalyst performance was also examined degrading methyl orange and phenol and high degradation efficiency, 82 and 99%, was achieved, respectively. The structure, morphology, light absorption and photocatalytic properties of as-prepared P25/Fe0/ZnO were studied using TEM, BET, XRD, FTIR and DRS.  相似文献   

2.
In this paper, ZnO was applied to modify the surface of LiNi1/3Co1/3Mn1/3O2 cathode material by a simple method. Powder X-ray diffraction (XRD) results show that both of the pristine material and the modified material were well crystallized and closely similar to each other. The crystal parameters of pristine material increased by modified measure. Scan electron microscope (SEM) pictures exhibit that the quasispherical pristine material was modified to the squareness one. Transmission electron microscope (TEM) image clearly elucidates that ZnO (several nanometers to 20 nm) was successful coated on surface of LiNi1/3Co1/3Mn1/3O2. X-ray photo-electron spectrometry (XPS) is used to characterize the composite of the coating layer on the surface of modified material. Electrochemical performance results present that the ZnO coating layer decrease the initial capacities of LiNi1/3Co1/3Mn1/3O2 by increasing the surface layer resistances. However, the cycling performance of LiNi1/3Co1/3Mn1/3O2 was effectively improved by the ZnO coating layer.  相似文献   

3.
We proposed here a new process coupling dielectric barrier discharge (DBD) plasma with magnetic photocatalytic material nanoparticles for improving yield in DBD degradation of methyl orange (MO). TiO2 doped Fe3O4 (TiO2/Fe3O4) was prepared by the sol-gel method and used as a new type of magnetic photocatalyst in DBD system. It was found that the introduction of TiO2/Fe3O4 in DBD system could effectively make use of the energy generated in DBD process and improve hydroxyl radical contributed by the main surface Fenton reaction, photocatalytic reaction and catalytic decomposition of dissolved ozone. Most part of MO (88%) was degraded during 30 min at peak voltage of 13 kV and TiO2/Fe3O4 load of 100 mg/L, with a rate constant of 0.0731 min?1 and a degradation yield of 7.23 g/(kW h). The coupled system showed higher degradation efficiency for MO removal.  相似文献   

4.
Ti-loaded ZnO and Ti-loaded ZnO/ZnO nanoparticles have been synthesized by sol–gel method and analyzed for photocatalyst application. The phase confirmation was analyzed by powder XRD and surface morphology with HR-SEM and EDAX spectrum. The particle size measured using HR-TEM and SAED pattern confirms the crystalline nature of Ti-loaded ZnO and Ti-loaded ZnO/ZnO nanoparticles. The optical properties were studied with UV–visible diffuse reflectance spectra. The DRS of Ti-loaded ZnO/ZnO nanoparticles are similar to those of pristine ZnO nanoparticles. The KM plots show both the synthesized Ti-loaded ZnO/ZnO and Ti-loaded ZnO exhibit in UV-A region. The electric properties are studied with impedance analyzer, and the results show the charge-transfer resistance of Ti-loaded ZnO/ZnO is larger than that of Ti-loaded ZnO nanoparticles. The photocatalytic activity was studied with methylene blue dye and phenol degradation by Ti-loaded ZnO/ZnO, Ti-loaded ZnO, TiO2 and ZnO nanoparticles. The photocatalytic activity of Ti-loaded ZnO/ZnO nanospheres is slightly higher than that of other nanoparticles, which shows that they have excellent application as photocatalyst.  相似文献   

5.
Results of thermodynamic calculations and kinetic studies of the reaction of zinc ferrite ZnFe2O4 and of a mixture of oxides, ZnO and Fe2O3, with chlorine and SO2 are presented.  相似文献   

6.
Magnetically separable Fe3O4/AgCl photocatalysts were prepared by a one-pot sequential method. A series of techniques proved the hybrid structure of Fe3O4/AgCl composites. Fe3O4/AgCl composites had a much higher photocatalytic activity toward Rhodamine B (RhB) degradation than pure AgCl under the simulated solar light irradiation. The existence of metal Ag resulted in high photocatalytic activity of Fe3O4/AgCl, which was related with the amount of metallic Ag. The scavenging experiments showed that the degradation reaction most probably was initiated by the photoinduced single-electron transfer, and the generation of superoxide anion (O 2 ) played a significant role. The composite photocatalysts could be recycled by applying an external magnetic field, and the reused composites maintained their original photocatalytic activity. Fe3O4/AgCl composites were highly efficient, magnetically separable, and recoverable. This proves their potential applications in the photodegradation of organic pollutants.  相似文献   

7.
Single-phase zinc aluminate (ZnAl2O4) nanoparticles with the spinel structure was successfully obtained by the sol–gel method. The nanoparticles are crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminum ions changes with heat treatment temperature, as observed by FT-IR and also by 27Al solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. The photoluminescence spectra show that the emission of pristine ZnAl2O4 may change depending on the calcining temperature due to the quantum size effect.  相似文献   

8.
The thermodynamics of vaporization in the Bi2O3-Fe2O3 quasibinary system was studied by high-temperature mass-spectrometry. The partial pressures of the constituents of a saturated vapor over the system at 1100 K were determined. Based on the experimental data, the following parameters were calculated: the activities of the components of the Bi2O3-Fe2O3 system condensed phase, the standard enthalpies of some heterogeneous reactions, and standard enthalpies of formation and enthalpies of formation for crystalline BiFeO3 and Bi2Fe4O9 from individual oxides. An optimal temperature for the solid-phase synthesis of bismuth ferrites from simple oxides is recommended.  相似文献   

9.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

10.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

11.
A novel nanomagnetic composite heteropolyacid immobilized chitosan/Fe3O4 was prepared via a facile one-pot synthetic approach. This magnetically recoverable nanocatalyst, H3PMo12O40/chitosan/Fe3O4 (PMo/chit/Fe3O4), was fully characterized by XRD, FTIR, SEM and EDX analysis methods. A rapid, efficient and the chemoselective synthesis of different pyrano-pyrazole derivatives was achieved in excellent yields via a one-pot four-component reaction in the presence of catalytic amount of PMo/Chit/Fe3O4.  相似文献   

12.
Phase relations in the solid state in the FeVO4–Co3V2O8 system, in the whole range of components concentration have been studied. It was found that the composition of the phase of the howardevansite type structure, formed in the investigated system, corresponds with the Co2.616Fe4.256V6O24 formula. The phase of the lyonsite type structure has a homogeneity range with the Co3+1.5xFe4–xV6O24 formula (0.476 formula (0.476<x<1.667). The melting temperature and the volume of the unit cell of the lyonsite type structure phase increases together with the rise of cobalt quantity contained in it. Basing on the results of the DTA and XRD measurements a phase diagram of the FeVO4–Co3V2O8 system up to the solidus line was constructed.  相似文献   

13.
In this work, a facile ultrasonic-assisted method was applied for preparation of Fe3O4/Ag3VO4 nanocomposites with different compositions. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive analysis of X-rays, UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometery. Photocatalytic degradation of rhodamine B under visible-light irradiation was investigated, and it was found that weight ratio of Fe3O4–Ag3VO4 has significant influence on the photocatalytic activity and the nanocomposite with 1:4 weight ratio of Fe3O4–Ag3VO4 has superior activity. In addition, the nanocomposite showed great activities in degradations of methylene blue and fuchsine, which are comparable with activity of the pure Ag3VO4. More importantly, this nanocomposite displayed remarkable saturation magnetization, leading to easily and quickly separation of its suspension from treated system by applying a magnetic field.  相似文献   

14.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

15.
The reaction of Bi2O3 + Fe2O3 mixtures with chlorine and SO2 at 250–700°C is studied. At 300–500°C, the degree of bismuth chloride sublimation from the oxide mixture increases in the presence of SO2. Chemical sublimation of FeCl3 occurs after BiCl3 is virtually completely recovered from the solid phase.  相似文献   

16.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

17.
Iron oxide-loaded Cu2O photocatalysts were prepared by a facile hydrothermal method. The binary mixed metal oxide photocatalyst was characterized by XRD, FE-SEM, FTIR, UV–Vis-DRS, particle size and zeta potential measurements. XRD analysis showed that Fe2O3/Cu2O catalysts were phase pure and highly crystalline in nature. FE-SEM images revealed the formation of nanospherical Fe2O3 over the Cu2O surface during hydrothermal reaction. From UV–Vis diffuse reflectance spectroscopy studies, the optical band gap of the Fe2O3/Cu2O photocatalyst was found to be slightly red-shifted to 1.85 eV, after loading of Fe2O3. The zeta potential analysis revealed that the surface of the Fe2O3/Cu2O photocatalyst was negatively charged in neutral solution. The loading of n-type Fe2O3 on p-type Cu2O augments the charge carrier separation at the interface, which was evident from the enhanced photodegradation of organic pollutants (Methylene blue and Rhodamine B dyes) under visible light irradiation.  相似文献   

18.
A highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst, Co3O4/FeWO4 was prepared by simple impregnation method. The heterojunction semiconductors Co3O4/FeWO4 demonstrated notably high photocatalytic activity over a wide range of composition than the individual component Co3O4 or FeWO4 for the complete degradation of 1,4-dichlorobenzene (DCB) in aqueous phase under visible light irradiation. The photocatalytic activity of composite was optimized at 1/99 Co3O4/FeWO4 composition. After 2 h of visible light irradiation 51% decomposition of 1,4-dichlorobenzene (DCB) was observed utilizing 1/99 Co3O4/FeWO4 photocatalyst while the end members demonstrated a negligible degradation under the same experimental condition. The valence band (VB) and conduction band (CB) of Co3O4 is located above the VB and CB of FeWO4, respectively. Both the semiconductors Co3O4 and FeWO4 exhibit strong absorption over the wide range of visible light. The obviously enhanced photocatalytic performance of Co3O4/FeWO4 composite has been discussed on the hole (h+) as well as electron (e?) transfer mechanism between the VB and CB of individual semiconductors.  相似文献   

19.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

20.
In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号