首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

2.
Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of an α-Bi2O3 sample revealed staged phase transitions in the range 720–800°C (at 720, 780, and 800°C) and the elimination of oxygen to the composition Bi2O2.967 during heating to 895°C in air at 16 K/min. In dynamic vacuum (p = 1.33 Pa) at 780–800°C, Bi2O3 consecutively transforms to a phase with the cubic γ-Bi2O3 structure and tetragonal Bi2O2.3?2.4. In the latter, electron diffraction in a transmission electron microscope (ED/TEM) shows a superstructure with the superstructure vector q 110 ≈ 1/9, which indicates an ordered arrangement of oxygen vacancies.  相似文献   

3.
Chemisorption of SO2 and O2 on the In2O3 surface containing a zinc additive (0.4–2.7 at.%) was studied in a temperature range of 22–200 °C. At least three forms of sorbed SO2 exist on the modified In2O3 surface. The temperature affects the contribution of single forms of SO2 sorption and, hence, the change in the electric conductivity. The preliminary sorption of O2 favors the formation of a donor form of chemisorbed SO2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2228–2232, October, 2005.  相似文献   

4.
Phase relations in the Y2O3-Ga2O3 system were studied by the anneal-and-quench technique in air within 1000–2300°C, and a phase diagram was plotted. Three compounds were found to form: Y3GaO6, Y4Ga2O9, and Y3Ga5O12; the temperature and concentration bounds of stability were determined for these compounds. Indexing results for Y3GaO6 are given.  相似文献   

5.
A series of MoO3 doped Fe2O3 catalysts prepared by the co-precipitation method were investigated in the selective catalytic reduction of NO by NH3 (NH3-SCR). The catalysts displayed excellent catalytic activity from 225 to 400°C and high tolerance to SO2/H2O poisoning at 300°C. To characterize the catalysts the N2-BET, XRD, Raman, NO-TPD, NH3-TPD and in situ DRIFTS were carried out. It was found that the main reason explaining a high NH3-SCR performance might be the synergistic effect between Fe and Mo species in the catalyst that could enhance the dispersion of Fe2O3 and increase NH3 adsorption on the catalyst surface.  相似文献   

6.
Phase relations in the MgO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. No ternary compounds have been found in the system. Quasi-binary sections have been the 600°C determined and isothermal section of the system has been constructed.  相似文献   

7.
(1.2–8.3)%FeOх/Al2O3 monolith catalysts have been prepared by impregnating alumina with aqueous solutions of iron(III) nitrate and oxalate and have been tested in NH3 oxidation and in the selective decomposition of N2O in mixtures resulting from ammonia oxidation over a Pt–Rh gauze pack under conditions of nitric acid synthesis (800–900°C). In the case of the support calcined at 1200°C, the catalyst is dominated by bulk Fe2O3 particles localized on the Al2O3 surface. The activity of these samples in both reactions decreases with a decreasing active component content, thus limiting the potential of Fe2(C2O4)3 · 5H2O, an environmentally friendlier but poorly soluble compound, as a substitute for Fe(NO3)3 · 9H2O. Decreasing the support calcination temperature to 1000°C or below leads to the formation of a highly defective Fe–Al–O solid solution in the (1.2–2.7)%FeOх/Al2O3 catalysts. The surface layers of the solid solution are enriched with iron ions or stabilize ultrafine FeOх particles. The catalytic activity of these samples in both reactions is close to the activities measured for ~8%FeOх/Al2O3 samples prepared using iron nitrate.  相似文献   

8.
Synthesis was performed and physicochemical properties were studied for the M4V2O3(SO4)4 complexes, where M = K, Rb, or Cs. Their crystal structures were determined using the set of data from X-ray diffraction and neutron diffraction studies. All compounds crystallize in a triclinic lattice (space group \(P\bar 1\), Z = 2) with the parameters: a = 7.7688(2), 7.8487(1), 8.1234(1) Å; b = 10.4918(3), 10.8750(2), 11.1065(1) Å; c = 11.9783(4), 12.1336(2), and 11.8039(1) Å; α = 76.600(2)°, 77.910(1)°, 79.589(1)°; β = 75.133(2)°, 75.718(1)°, 87.939(1)°; γ = 71.285(2)°, 72.189(1)°, 75.567(1)°; V = 881.78(5), 945.42(3), 1014.34(2) Å3 for K, Rb, Cs, respectively. The structure of M4V2O3(SO4)4 was found to be formed by discrete complex anions V2O3(SO4) 4 4? incorporating two oxygen-bridged vanadium atoms in a distorted octahedral oxygen environment. The sulfate groups are coordinated by the vanadium atoms in the chelating mode with a large scatter of S-O interatomic distances and OSO angles. Every VO6 octahedron has a short terminal vanadium-oxygen bond with a length of about 1.6Å. The V2O3(SO4) 4 4? complex anions in potassium and rubidium compounds differ from that in Cs4V2O3(SO4)4 in the type of symmetry and mutual spatial orientation. The vibrational spectra were presented and interpreted in line with the structural analysis data.  相似文献   

9.
Solid solutions based on cesium monogallate CsGaO2 are synthesized in the Ga2O3-TiO2-Cs2O system. Their crystalline structure and also temperature and concentration conductivity dependences are studied. The cesium cation character of conductivity is confirmed. The most conducting samples contain an excess of cesium oxide and have the structure of high-temperature γ-modification of KAlO2. Their specific conductivity is (5.0–6.7) × 10?3 S cm?1 at 400 °C, (2.5–5.0) × 10?2 S cm?1 at 700°C at the activation energy of 33–35 kJ/mol?1.  相似文献   

10.
CuCr2O4 spinel powders were synthesized starting from different chromium sources, namely (i) chromium oxide (α-Cr2O3) and (ii) ammonium dichromate ((NH4)2Cr2O7). The copper source was a Cu(II) carboxylate-type complex. The Cu(II) carboxylate complex was obtained by the redox reaction between Cu(NO3)2·3H2O and 1,3-propanediol (1,3PG) at 130 °C. In the first case (i), we have started from a mixture of α-Cr2O3, Cu(NO3)2·3H2O and 1,3PG that upon heating formed the copper malonate complex, which decomposed around 220 °C forming an oxide mixture (CuO + α-Cr2O3). In the second case (ii), (NH4)2Cr2O7, Cu(NO3)2·3H2O and 1,3PG were homogenously mixed. Heating this mixture at 130 °C resulted, in situ, in the Cu(II) complex. On controlled temperature increase, the violent decomposition of (NH4)2Cr2O7 took place at 180 °C along with the decomposition of the Cu(II) complex, leading to an amorphous oxide mixture of Cr2O3+x and CuO. By annealing the samples in the temperature range 400–1000 °C, the spinel phase (CuCr2O4) was obtained in both cases: (i) at 800 °C and (ii) at 600 °C as a result of the interactions between the precursors used, when the oxide system was amorphous and highly reactive. The presence of CuCr2O4 was highlighted by XRD and FTIR analyses.  相似文献   

11.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

12.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

13.
Phase formation processes in the systems Ln2O3-SrO-Fe2O3 (Ln = La, Nd) in air in the temperature range 1200–1500°C were studied. The synthesis of the complex ferrites La2SrFe2O7 and Nb2SrFe2O7 involves the formation of the intermediate compounds LnFeO3 and LnSrFeO4 and occurs by the same mechanism as the synthesis of the corresponding aluminates, but much faster.  相似文献   

14.
The conductivity and transport number of oxygen ions of Bi2O3-(10, 30, 50) vol % NiO composites are measured using the four-probe and coulomb-volumetric methods at various temperatures. It is shown that the Bi2O3-50 vol % NiO composite exhibits a high mixed ionic-electronic conductivity in the temperature range from 730 to 800°C.  相似文献   

15.
Phase relations in the CaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and differential thermal analyses, and the isothermal section at 600°C has been constructed. The formation of ternary compounds at the component ratios 1CaO: 1Bi2O3: 1B2O3 (CaBi2B2O7) and 1CaO: 1Bi2O3: 2B2O3 (CaBi2B4O10) has been established X-ray diffraction characteristics of these phases are presented.  相似文献   

16.
Thermal stabilities of layered perovskite-like oxides NaNdTiO4 and Na2Nd2Ti3O10 were studied in the temperature ranges from 780 to 1100°C and from 1100 to 1400°C, respectively. Chemical mechanism of their thermal decomposition was proposed. Higher thermal stability of Na2Nd2Ti3O10 was rationalized on the basis of crystallochemical data.  相似文献   

17.
Composites ZrO2-(Bi2CuO4+ 20 wt % Bi2O3) (50–80 vol % ZrO2) are synthesized and their physicochemical properties are studied. It is demonstrated that the composites comprise triple-phase mixtures of ZrO2 of a monoclinic modification, Bi2CuO4, and solid solution Bi2?x Zr x O3 + x/2 and retain their mechanical strength up to 800°C. Impedance spectroscopy is used to examine their electroconductivity at 700–800°C in the interval of partial oxygen pressures extending from 37 to 2.1 × 104 Pa. Contributions made by electronic and ionic constituents to their overall conductivity are evaluated. The best specimens’ conductivity is ~0.01 S cm?1, with the electronic and ionic transport numbers nearly equal. The composite consisting of 50 vol % ZrO2 and 50 vol % (Bi2CuO4 + 20 wt % Bi2CuO4) is tested in the role of an oxygen-separating membrane. The selective flux of oxygen in the temperature interval 750–800°C amounts to (2.2–6.3) × 10?8 mol cm?2 s?1, testifying that these materials may be used as gas-separating membranes.  相似文献   

18.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   

19.
The effect of O2, Cl2, and SO2 on electrophysical and sorption properties of powdered In2O3 with a large specific area is studied at 23–200°C. The specimen is most sensitive to Cl2 and SO2 at near-room temperatures.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 529–536.Original Russian Text Copyright © 2005 by Vinokurova, Derlyukova.  相似文献   

20.
It has been demonstrated that Co2V2O7 and InVO4 react with each other forming a new compound of the Co2InV3O11 formula, when their molar ratio is equal to 1:1, or among CoCO3, In2O3 and V2O5, mixed at a molar ratio of 4:1:3. This compound melts incongruently at the temperature of 960±5°C, depositing crystals of InVO4. It crystallizes in the triclinic system and the unit cell parameters amount to: a=0.6524(6) nm, b=0.6885(5) nm, c=1.0290(4) nm, α=96.5°, β=104.1°, γ=100.9°, Z=2. The phase equilibria being established in the Co2V2O7–InVO4 system over the whole components concentration range up to the solidus line were described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号