首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
[1]J.S. Bell, Physics 1 (1965) 195. [2]D.M. Greenberger, M.A. Horne, A. Shimony, and A.Zeilinger, Am. J. Phys. 58 (1990) 1131. [3]K. Banaszek and K. Wodkiewicz, Phys. Rev. A58 (1998)4345. [4]A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 15(1935) 777. [5]Z. Chen, J. Pan, G. Hou, and Y. Zhang, Phys. Rev. Lett.88 (2002) 040406. [6]H. Jeong, W. Son, M.S. Kim, D. Ahn, and C. Brukner,Phys. Rev. A67 (2003) 012106. [7]Z. Chen and Y. Zhang, Phys. Rev. A65 (2002) 044102. [8]C. Chai, Phys. Rev. A46 (1992) 7187; N.A. Ansari and V.I. Man‘ko, Phys. Rev. A50 (1994) 1942; V.V. Dodonov,V.I. Man‘ko, and D.E. Nikonov, Phys. Rev. A51 (1995)3328. [9]B.C. Sanders, Phys. Rev. A45 (1992) 6811. [10]M.S. Kim and J. Lee, Phys. Rev. A61 (2000) 042102. [11]C.C. Gerry, Phys. Rev. A54 (1996) R2529. [12]H. Jeong and B.C. Sanders, Phys. Rev. A65 (2002)042305. [13]N.D. Mermin, Phys. Rev. Lett. 65 (1990) 1838. [14]S.B. Zheng, Quantum Semiclass. Opt. 10 (1998) 691. [15]E. Solano, G.S. Agarwal, and H. Walther, quantph/0202071.  相似文献   

2.
[1]M. Wadati, H. Sanuki, and K. Konno, Prog Theor. Phys.53 (1975) 419. [2]V.A. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, Heidelberg (1991). [3]M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scatting, Cambridge University Press, New York (1991). [4]X.B. Hu and W.X. Ma, Phys. Lett. A293 (2002) 161. [5]S.Y. Lou and J.Z. Lu, Phys. A29 (1996) 4209. [6]X.Y. Tang and S.Y. Lou, Chin. Phys. Lett. 20 (2003) 335. [7]M.L. Wang and H.Q. Zhang, Phys. Lett. A252 (1999)291. [8]Peter A. Clarkson and Martin D. Kruskal, J. Math. Phys.30 (1989) 2201. [9]S.Y. Lou, X.Y. Tang, and J. Lin, J. Math. Phys. 41 (2000)8286. [10]Hui-Bin Li and Ke-Lin Wang, J. Phys A: Math Gen. 23(1990) 4097. [11]W. Maltliet, Am. J. Phys. 31 (1992) 329. [12]W.X. Ma, Int. J. Nonlinear Mech. 31 (1996) 329. [13]E.G. Fan, Phys. Lett. A294 (2002) 26. [14]Y.T. Gao and B. Tian, Comput. Math. Appl. 33 (1997)115. [15]Z.Y. Yan and H.Q. Zhang, Phys. Lett. A285 (2001) 355. [16]Y. Chen, B. Li, and H.Q. Zhang, Commun. Theor. Phys.(Beijing, China) 38 (2002) 261. [17]B. Li, Y. Chen, and H.Q. Zhang, J. Phys. A: Math. Gen.35 (2002) 8253. [18]Y. Chen, B. Li, and H.Q. Zhang, Commun. Theor. Phys.(Beijing, China) 40 (2003) 137. [19]E.G. Fan, J. Phys. A: Math. Gen. 36 (2003) 7009. [20]Z.S. Lu and H.Q. Zhang, Phys. Lett. A307 (2003) 269. [21]Z.S. Lu and H.Z. Zhang, Chaos, Solitons and Fractals 17(2003) 669. [22]S.Y. Lou, Math. Method in Applied Sci. 18 (1995) 789. [23]L.J.F. Broer, Appl. Sci. Res. 31 (1975) 377. [24]D.J. Benney and J.C. Luck, J. Math. Phys. 43 (1964)309. [25]D.J. Kaup, Prog. Theor. Phys. 54 (1975) 396. [26]T.Y. Wu and J.E. Zhang, On Modeling Nonlinear Long Wave, PA: SIAM, Philadelphia (1996) p. 233. [27]M. Boiti, J.J.P. Leon, and F. Pempinelli, Inverse Problems 3 (1987) 1025. [28]G. Paquin and P. Winternitz, Physica D46 (1990) 122. [29]S.Y. Lou, J. Phys. A27 (1994) 3235. [30]S.Y. Lou, Phys. Lett. A176 (1993) 96. [31]M.L. Wang, Y.B. Zhou, and Z.B. Li, Phys. Lett. A216(1996) 67. [32]B. Tian and Y.T. Gao, J. Phys. A29 (1996) 2895.  相似文献   

3.
[1]S.Y. Lou, Chin. Phys. Lett. 16 (1999) 659. [2]S.Y. Lou, Commun. Theor. Phys. (Beijing, China) 35(2001) 589. [3]C.S. Gardner, J. M. Green, et al., Phys. Rev. Lett. 19(1967) 1095. [4]R. Hirota, Phys. Rev. Lett. 27 (1971) 1192. [5]S.Y. Lou, Phys. Lett. A151 (1990) 133. [6]V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991). [7]C.L. Chen and X.Y. Tang, Phys. Rev. E66 (2002) 036605. [8]S.Y. Lou and L.L. Chen, J. Math. Phys. 40 (1999) 6491. [9]S.Y. Lou and J.Z. Lu, J. Math. Gen. 29 (1996) 4209 [10]S.Y. Lou, Phys. Lett. A277 (2000) 94. [11]J.F. Zhang and P. Han, Acta Phys. Sin. 51 (2002) 705 (in Chinese). [12]J.F. Zhang, Commun. Theor. Phys. (Beijing, China) 37(2002) 277. [13]C.L. Zheng and J.F. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 9. [14]H.Y. Ruan and Y.X. Chen, Acta Phys. Sin. 50 (2001) 586(in Chinese). [15]R.Z. Zhadnov, J. Phys. A: Math. Gen. 27 (1994) L291,and the references therein. [16]J.J.C. Nimmo, Phys. Lett. A168 (1992) 113. [17]J.M. Verosky, J. Math. Phys. 32 (1991) 1733. [18]S.Y. Lou, Phys. Lett. A175 (1993) 23.  相似文献   

4.
[1]J.D. Bjorken, Phys. Rev. D 47 (1993) 101. [2]T. Regge, Ⅱ Nuovo 14 (1959) 951. [3]P.D.B. Collins, Introduction to Regge Theory, Cambridge University Press, Cambridge (1977). [4]G.F. Chew and S.C. Frautschi, Phys. Rev. Lett. I (1961)394. [5]A. Donnachie and P.V. Landshoff, Phys. Lett. B 231(1987) 189; Nucl. Phys. B 244 (1984) 322. [6]A. Donnachie and P.V. Landshoff, Nucl. Phys. B 311(1989) 509; J.R. Cudell, Nucl. Phys. B 336 (1990) 509. [7]D.G. Cassel, et al., Phys. Lett. B 136 (1985) 203; B 133(1983) 370. [8]Ma Wei-Xing and Zhou Li-Juan, Commun. Theor. Phys.(Beijing, China) 36 (2002) 577. [9]J.J. Aubert, et al., Phys. Lett. B 161 (1985) 203. [10]J.M. Carget, et al., Nucl. Phys. A 581 (1995) 397. [11]T.D. Meng, et al., Phys. Rev. Lett. 82 (1999) 2044. [12]H. Terazawa, Gluons, Glueballs, Odderons, Pomerons and Color-ball, KEK, preprint 99-47, July, (1999). [13]F.E. Lowm Ogts, Phys. Rev. D 12 (1975) 16; S. Nussikov,Phys. Rev. Lett. 34 (1975) 1286. [14]E.A. Kuraev, L.N. Lipatov, and V.S. Fadin, Phys. Lett.B 60 (1975) 50. [15]P.V. Landshoff and O. Nachtmann, Z. Phys. C 35 (1987)405. [16]J.Z. Bai, et al., Phys. Rev. Lett. 76 (1996) 3502. [17]R.M. Baltkusaitis, et al., Phys. Rev. Lett. 56 (1986) 107. [18]Ma Wei-Xing, et al., Commun. Theor. Phys. (Beijing,China) 43 (2005) 504. [19]L.C. Liu and W.X. Ma, J. Phys. G: Nucl. Part. Phys. 26(2000) L59. [20]A.H. Mueller, Phys. Rep. 73 (1981) 237. [21]V.A. Novikov, M. A. Shifman, A.L. Vainstein, and V.I.Zakharov, Nucl. Phys. B 165 (1980) 67; Nucl. Phys. B 191 (1981) 301; L.S. Kisslinger and J. Gardnei, Phys.Lett. B 410 (1997) 1. [22]H. Kavaum and R. Nakuyama, Nucl. Phys. B 189 (1981)40. [23]L.C. Liu and W.X. Ma, J. Phys. G: Nucl. Part. Phys. 26(2000) L59.  相似文献   

5.
[1]H.W. Tam, W.X. Ma and X.B. Hu, J. Phys. Soc. Jpn. 69(2000) 45. [2]R. Hirota and J. Satsuma, Phys. Lett. A85 (1981) 407. [3]H.W. Tam, X.B. Hu and D.L. Wang, J. Phys. Soc. Jpn.68 (1999) 369. [4]J. Satsuma and R. Hirota, J. Phys. Soc. Jpn. 51 (1982)332. [5]E.G. Fan and H.Q. Zhang, Phys. Lett. A246 (1998) 403. [6]E.G. Fan, Phys. Lett. A277 (2000) 212. [7]W. Malfiet, Am. J. Phys. 60 (1992) 650. [8]E.J. Parkes and B.R. Duffy, Comput. Phys. Commun. 98(1996) 288. [9]N.F. Smyth, J. Aust. Math. Soc. Series B33 (1992) 403. [10]P.A. Clarkson and E.L. Manfield, Physica D70 (1993)250. [11]N.A. Kudryashov and D. Zargayan, J. Phys. A29 (1996)8067.  相似文献   

6.
[1]C.T. Hill, Phys. Lett. B345 (1995) 483; K. Lane and E.Eichten, Phys. Lett. B352 (1995) 382; K. Lane, Phys.Lett. B433 (1998) 96. [2]R. Raja, presented at the XXXII Rencontres de Moriond on Electroweak Interactions and Unified Theories, les Arcs, Savoie, France, March 15-22, (1997). [3]M.E. Peskin, “Physics and Experiments with Linear Collider“, Proceedings of the Workshop, Saarilka, Finland (1991), eds R. Orava, P. Eerala and M. Nordberg, World Scientific, Singapore (1992); A.P. Heinson, Talk given at the XXXIst Rencontres de Moriond, “QCD and High Energy Hadronic Interactions“, les Arcs, Savoie, France,23rd-30th March (1996), Fermilab-Conf. 96/116-E, May (1996). [4]R.D. Peccei and X. Zhang, Nucl. Phys. B337 (1990) 269;R.D. Peccei, S. Peris and X. Zhang, Nucl. Phys. B349(1991) 305. [5]S. Dawson, Nucl. Phys. B249 (1985) 42; S. Willenbrock and D. Dicus, Phys. Rev. D34 (1986) 155; S. Dawson and S. Willenbrock, Nucl. Phys. B284 (1987) 449; C.-P.Yuan, Phys. Rev. D41 (1990) 42; F. Anselmo, B. van Eijk and G. Bordes, Phys. Rev. D45 (1992) 2312; R.K. Ellis and S. Parlce, Phys. Rev. D46 (1992) 3875; D. Carlson and C.-P. Yuan, Phys. Lett. B306 (1993) 386; G. Bordes and B. van Eijk, Nucl. Phys. B435 (1995) 23; A. Heinson,A. Belyaev and E. Boos, Phys. Rev. D56 (1997) 3114. [6]S. Cortese and R. Petronzio, Phys. Lett. B306 (1993) 386;T. Stelzer and S. Willenbrock, Phys. Lett. B357 (1995)125. [7]M. Smith and S. Willenbrock, Phys. Rev. 954 (1996)6696. [8]T.G. Rizzo, Phys. Rev. D53 (1996) 6218; G. Mahlon and S. Parke, Phys. Rev. D55 (1997) 7249. [9]E.H. Simmons, Phys. Rev. D55 (1997) 5494. [10]A. Datta and X. Zhang, Phys. Rev. D55 (1997) 2530. [11]YUE Chong-Xing, KUANG Yu-Ping and LU Gong-Ru,Phys. Rev. D56 (1997) 291. [12]G. Buchalla, G. Burdman, C.T. Hill and D. Kominis,Phys. Rev. D53 (1996) 5185. [13]K. Lane, Phys. Lett. B357 (1995) 624; YUE ChongXing, ZHOU Hong-Yi, KUANG Yu-Ping and LU GongRu, Phys. Rev. D55 (1997) 5541. [14]L. Randall and E.H. Simmons, Nucl. Phys. B3S0 (1992)3; V. Lubicz, Nucl. Phys. B404 (1993) 559; V. Lubicz and P. Santorclli, Nucl. Phys. B460 (1996) 3. [15]G.H. WU, Phys. Rev. Lett. 74 (1995) 4173; C.X. YUE,Y.P. KUANG, et al., Phys. Rev. D52 (1995) 5314; K.Hagiwara and N. Kitazawa, Phys. Rev. D52 (1995) 5374. [16]C.X. YUE, Y.P. KUANG and G.R. LU, J. Phys. G23(1997) 163. [17]W. Loinaz and T. Takuchi, Phys. Rev. D60 (1999)015005. [18]M.B. Popovic and E.H. Simmons, Phys. Rev. D58 (1998)095007. [19]B. Balaji, Phys. Rev. D53 (1996) 1699. [20]K. Eicbten and K. Lane, Phys. Lett. B222 (1989) 129; K.Lane and M.V. Ramana, Phys. Rev. D44 (1991) 2678. [21]Z.J. XIAO, L.D. WAN, G.R. LU, J.M. YANG, X.L.WANG, L.B. GAO and C.X. YUE, J. Phys. G20 (1994)901. [22]G. Burdman and D. Kominis, Phys. Lett. B403 (1997)101. [23]C.X. YUE, Y.P. KUANG, X.L. WANG and W.B. LI, hepph/0001133, Phys. Rev. D62 (2000) 055005. [24]J.H. Field, UGVA-DPNC (120-173) hep-ph/9801413(1997); D. Chang and E. Ma, hep-ph/9909537. [25]A.P. Heinson, “Future Top Physics at the Tevatron and LHC“, hep-ex/9605010; A.P. Heinson, A.S. Belayev and E.E. Boos, Phys. Rev. D56 (1997) 3114; M. Bohm, W.Hollik and H. Spiesbergerm, Fortschr. Phys. 34 (1986)687. [26]G.R. LU, et al., Phys. Rev. D54 (1996) 1083. [27]J. Morfin and W.K. Tung, Z. Phys. C52 (1991) 13. [28]A. Axelrod, Nucl. Phys. B209 (1982) 349; G. Passarino and M. Veltman, ibid. B160 (1979) 151; M. Clements, et al., Phys. Rev. D27 (1983) 570.  相似文献   

7.
[1]K. Chahara, T. Ohono, M. Kasai, Y. Kanke, and Y. Kozono, Appl. Phys. Lett. 63 (1993) 1990. [2]R. von Helmolt, J. Wecker, B. Holzapfel, L. Shultz, and K. Samwer, Phys. Rev. Lett. 71 (1993) 2331. [3]Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A.Asamitsu, G. Kido, and N. Furukawa, J. Phys. Soc. Jpn.63 (1994) 3931. [4]S. Jin, T.H. Tiefel, M. NcCormack, R.A. Fastnacht, R.Ramesh, and L.H. Chen, Science 264 (1994) 413. [5]G.C. Xiong, Q. Li, L. Ju, S.N. Mao, L. Senapati, X.X.Xi, R.L. Greene, and T. Venkatesan, Appl. Phys. Lett.66 (1995) 1427. [6]C. Zener, Phys. Rev. 82 (1951) 403. [7]P.W. Anderson and H. Hasegawa, Phys. Rev. 100 (1955)675. [8]P.G. de Gennes, Phys. Rev. 118 (1960) 141. [9]E.O. Wollen and W.C. Koehler, Phys. Rev. 100 (1955)545. [10]P.E. Schiffer, et al., Phys. Rev. Lett. 75 (1995) 3336. [11]A.P. Ramirez, et al., Phys. Rev. Lett. 76 (1996) 3188. [12]J. Inoue and S. Maekawa, Phys. Rev. Lett. 74 (1995)3407. [13]H. Roder, J. Zang, and A.R. Bishop, Phys. Rev. Lett. 76(1996) 1356. [14]L.J. Zou, X.G. Gong, Q.Q. Zheng, and C.Y. Pan, J. Appl.Phys. 79 (1996) 5162. [15]P.M. Levy and S.F. Zhang, Phys. Rev. Lett. 79 (1997)5110. [16]J. Jiang, J.M. Dong, and D.Y. Xing, Phys. Rev. B55(1997) 8973. [17]D.P. Arovas and F. Guinea, Phys. Rev. B58 (1998) 9150. [18]L.F. Feiner and A.M. Oles, Phys. Rev. B59 (1999) 3295. [19]S. Okamoto, S. Ishihara, and S. Maekawa, Phys. Rev.B61 (2000) 451; ibid. 65 (2002) 144403. [20]W.G. Yin, H.Q. Lin, and C.D. Gong, Phys. Rev. Lett. 87(2001) 047204. [21]E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344(2001) 1. [22]I.V. Solovyev and K. Terakura, Phys. Rev. B63 (2001)174425. [23]J. Wang, Z.D. Wang, W.Y. Zhang, and D.Y. Xing, Phys.Rev. B66 (2002) 064406. [24]H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo,and Y. Tokura, Science 270 (1995) 961. [25]C.H. Chen and S.W. Cheong, Phys. Rev. Lett. 76 (1996)4042. [26]J.B. Goodenough, Phys. Rev. 100 (1955) 564. [27]A.J. Millis, P.B. Littlewood, and B.I. Shrainman, Phys.Rev. Lett. 74 (1995) 5144; A.J. Millis, B.I. Shraiman, and R. Mueller, ibid. 77 (1996) 175. [28]T. Mizokawa and A.Fujimori, Phys. Rev. B56 (1997)493. [29]J.D. Lee and B.I. Min, Phys. Rev. B55 (1997) 14713. [30]S.K. Mishra, R. Pandit, and S. Satpathy, Phys. Rev. B56(1997) 2316. [31]J.F. Shao, G.S. Tian, and T.H. Lin, Commun. Theor.Phys. (Beijing, China) 33 (2000) 329. [32]K.I. Kugel and D.I. Khomskii, JETP Lett. 15 (1972) 446;D.I. Khomskii and K.I. Kugel, Solid Sate Commun. 13(1973) 763. [33]R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev.B58 (1998) 11583; R. Maezono and N. Nagaosa, Phys.Rev. B67 (2003) 064413. [34]J. van den Brink, G. Khaliullin, and D. Khomskii, Phys.Rev. Lett. 83 (1999) 5118. [35]G. Jackeli, N.B. Perkins, and N.M. Plakida, Phys. Rev.B62 (2000) 372. [36]Z. Popovic and S. Satpathy, Phys. Rev. Lett. 88 (2002)197201. [37]I.V. Solovyev, Phys. Rev. Lett. 91 (2003) 177201. [38]J. Li, H.Q. Lin, and C.D. Gong, Solid State Commun.115 (2000) 449. [39]D. Poilblanc and T.M. Rice, Phys. Rev. B39 (1989) 9749. [40]A. Himeda and M. Ogata, J. Phys. Chem. Solids 63(2002) 1423.  相似文献   

8.
[1]N. Yajima and M. Oikawa, Prog. Theor. Phys. 56 (1976)1719. [2]Y.C. Ma, Studies Appl. Math. 59 (1978) 201. [3]Y.C. Ma and L.G. Rederopp, Phys. Fluids 22 (1979) 1572. [4]M. Funakoshi and M. Oikowa, J. Phys. Soc. Jpn. 52(1983) 1982. [5]M. Oikawa, M. Okamura, and M. Funakoshi, J. Phys. Soc.Jpn. 58 (1989) 4416. [6]Derek W.C. Lai and K.W. Chow, J. Phys. Soc. Jpn. 68(1999) 1847. [7]D.H. Wahlquist and F.B. Estabrook, J. Math. Phys. 16(1975) 1. [8]H.C. Morris, J. Math. Phys. 17 (1976) 1870; H.C. Morris,J. Phys. A: Math. Gen. 12 (1979) 261. [9]J.F. Lu, et al., Phys. Lett. A135 (1989) 179; A213 (1996)32; X.Q. Zhao and J.F. Lu, J. Phys. Soc. Jpn. 68 (1999);IL Nuo. Cim. 112 (1999) 1501.  相似文献   

9.
[1]BES Collaboration,Nucl.Phys.B75 (1999) 181;Z.P.Zheng,Int.J.Mod.Phys.A15 (2000) 4723. [2]J.Z.Bai,et al.,Phys.Rev.Lett.81 (1998) 3091. [3]V.A.Novirov,et al.,Phys.Rep.C41 (1978) 1. [4]R.Barbieri,R.Gatto and E.Remiddi,Phys.Lett.B95(1980) 93;Nucl.Phys.B192 (1981) 61. [5]G.T.Bodwin,E.Braaten and G.P.Lepage,Phys.Rev.D46 (1992) R1914. [6]G.T.Bodwin,E.Braaten and G.P.Lepage,Phys.Rev.D51 (1995) 1125. [7]A.Duncan and A.H.Mueller,Phys.Lett.B93 (1980) 119;A.H.Mueller,Phys.Rep.C73 (1981) 237. [8]G.P.Lepage and S.J.Brodsky,Phys.Rev.D22 (1980)2157. [9]J.Bolz,P.Kroll and G.A.Schuler,Phys.Lett.B392(1997) 198;Eur.Phys.J.C2 (1998) 705. [10]X.N.WANG,X.D.XIANG and T.HUANG,Commun.Theor.Phys.(Beijing,China) 5 (1986) 123. [11]V.L.Chernyak and A.R.Zhitnisky,Nucl.Phys.B201(1982) 492. [12]T.HUANG,B.Q.MA and Q.X.SHEN,Phys.Rev.D49(1994) 1490. [13]A.V.Radyushkin and R.T.Ruskov,Phys.Lett.B374(1996) 848. [14]R.Jakob,P.Kroll and M.Raulfs,J.Phys.G22 (1996)45;P.Kroll and M.Raulfs,Phys.Lett.B387 (1996) 848. [15]I.V.Musatov and A.V.Radyushkin,Phys.Rev.D56(1997) 2713. [16]S.J.Brodsky,T.Huang and G.P.Lepage,Particles and Fields 2,eds Z.Capri and A.N.Kamal,(1982) p.143.  相似文献   

10.
Investigation of     
[1]Carl B. Dover, et al., Phys. Rep. 89 (1982) 141. [2]M. Rufa, et al., Phys. Rev. C42 (1990) 2469. [3]Z.Y. Ma, J. Speth, S. Krewald, et al., Nucl. Phys. A608(1996) 305. [4]Y.H. Tan, Y.A. Luo, P.Z. Ning, et al., Chin. Phys. Lett. 18 (2001) 1030. [5]H. Shen and H. Toki, Nucl. Phys. A707 (2002) 469. [6]A.A. Tyapkin, Sov. J. Nucl. Phys. 22 (1976) 89. [7]K. Tsushima and F.C. Khanna, nucl-th/0207036. [8]C.B. Dover and S.H. Kahana, Phys. Rev. Lett. 39 (1977)1506. [9]H. Bando and S. Nagata, Prog. Theor. Phys. 69 (1983)557. [10]H. Bando and M. Bando, Phys. Lett. B109 (1982) 164; B.F. Gibson, et al., Phys. Rev. C27 (1983) 2085. [11]N.I. Starkov and V.A. Tsarev, Nucl. Phys. A450 (1986) 507c. [12]S.A. Bunyatov, V.V. Lyukov, N.I. Starkov, and V.A. Tsarev, Sov. J. Part. Nucl. 23 (1992) 253. [13]Yu. A. Batusov, et al., Preprint of the JINR EI-10069(1976); Sov. J. JETP Lett. 33 (1981) 56. [14]T. Bressani and F. Iazzi, Nuo. Cim. A102 (1989) 597. [15]S.A. Buyatov, V.V. Lyukov, N.I. Strakov, and V.A. Tsarev, Nuo. Cim. A104 (1991) 1361. [16]B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 (1986) 1. [17]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [18]K. Tsushima, K. Saito, and A.W. Thomas, Phys. Lett.B411 (1997) 9. [19]H. Shen and H. Toki, Phys. Rev. C61 (2000) 045205. [20]Y.H. Tan, H. Shen, and P.Z. Ning, Phys. Rev. C63 (2001)055203. [21]K. Tsushima and F.C. Khanna, nucl-th/0207077. [22]M.M. Sharma, M.A. Nagarajan, and P. Ring, Phys. Lett. B312 (1993) 377. [23]N.K. Glendenning and S.A. Moszkowski, Phys. Rev. Lett. 67 (1991) 2414. [24]J. Schaffner, C. Greiner, and H. Stocker, Phys. Rev. C46 (1992) 322. [25]T. Fukuda, et al., Phys. Rev. C58 (1998) 1306. [26]P. Khaustov, et al., Phys. Rev. C61 (2000) 054603. [27]Y. Yamamoto, et al., Prog. Theor. Phys. Suppl. 117 (1994) 361. [28]S. Ajimura, et al., Nucl. Phys. A585 (1995) 173. [29]Q.N. Usmani and A.R. Bodmer, Phys. Rev. C60 (1999) 055215.  相似文献   

11.
比较鸡冠花炒炭前后XRD及IR光谱特征,探讨XRD及IR光谱对鸡冠花炒炭前后鉴别的意义。运用XRD光谱及IR二阶导数光谱,对不同产地鸡冠花炒炭前后进行光谱分析。鸡冠花及鸡冠花炭的XRD图比IR二阶导数谱差异更明显。XRD光谱技术可以对鸡冠花及鸡冠花炭进行直接、快速、有效的鉴别,可为鸡冠花及鸡冠花炭鉴别和质量控制提供可靠依据。  相似文献   

12.
FTIR直接鉴定紫苏子及其伪品的研究   总被引:11,自引:1,他引:10  
本文首次采用傅里叶变换红外光谱法的单次反射采样技术,直接、快速、准确地测定了种子类中药材紫苏子及其伪品的红外光谱。结果表明:种子类中药材紫苏子及其伪品的种仁和皮层由于所含化学成分的不同,其红外光谱的吸收的位置和强度均有明显差异,发现紫苏子与白苏子为同种植物,野生紫苏子则有所区别,且紫苏子与其伪品石荠苧、苏州荠苧及疏花荠苧的红外光谱吸收差别较大。根据红外特征吸收能够达到中药材的真伪鉴别及种类认定的目的。该方法具有直接、快速、准确、无需制样等特点。  相似文献   

13.
杨霖  周德刚  刘增根 《光谱实验室》2013,30(5):2582-2585
采用空气-乙炔火焰原子吸收光谱法对唐吉特铁线莲中的Ca、Zn、Mn、Cu、Fe、Mg、Co7种微量元素进行了含量测定.该方法的加标回收率在98.73%-102.27%之间,相对标准偏差在1.12%-2.10%之间,具有较高的准确度和精确度.唐古特铁线莲中微量元素的含量顺序为Mg>Ca>Fe>Mn>Zn>Cu>Co,且这7种元素与海拔没有线性关系.Mg、Ca、Fe、Mn和Zn含量较为丰富,其平均值分别为273.64、242.85、96.29、4.51、2.68mg/100g.这些研究结果为进一步探讨唐古特铁线莲的药理毒理和药效提供了科学依据.  相似文献   

14.
蒋国峰  周刚  宋一 《应用声学》2016,24(2):130-132
针对某机载惯导设备在外场的测试需求,设计了以PC-104为显示、控制和数据处理核心,并扩展程控数字表、多通道矩阵板,构建了原位测试仪的硬件电路。根据系统的功能要求和硬件电路特性,利用LabWindows/CVI虚拟仪器平台编制了人机接口界面和测试程序,控制硬件电路对某惯导设备的静态电阻和在线电压进行测试,并接收、分析、处理惯导原位工作时输出的实时串行数据,完成对惯导设备的静态测试和动态性能监测,实现对某机载惯导设备原位测试过程的自动化和测试结果管理的智能化,提高了测试效率和测试精度。该仪器通过改变或控制测试仪器的类别,可实现对多路信号多种性能指标的测试。应用结果表明,该测试仪具有性能稳定、操作简便、应用领域广、通用性强等特点。  相似文献   

15.
果蔬在收获、运输、贮藏、分拣、包装和销售过程中均会遭受不同程度的挤压、碰撞或摩擦,从而造成果蔬损伤,如挤伤、开裂、擦伤等外部损伤,同时,在生长过程中会产生黑心、水心、褐腐、霉心等内部损伤。果蔬损伤初期特征不明显,外观与正常果实基本无异,然而随着时间的推移,损伤组织恶化扩散,最终导致整个果实腐烂变质,又进而接触感染其他果实,造成周边甚至整箱果蔬病变,对果蔬产业造成巨大的经济损失。果蔬采后损伤检测方法多种多样,其中人工检测最为简单常用,但是该方法不仅耗时耗力,容易造成错判和漏判现象,而且无法实现肉眼不可见的皮下或内部损伤检测。近年来,随着计算机技术的快速发展,越来越多的无损检测技术被广泛应用于果蔬损伤检测,其中最为常用的当属光谱和成像技术。光谱成像技术通常结合图像处理、光谱分析、化学计量学方法、统计分析等手段,利用损伤果蔬和正常果蔬的图谱信号差异实现损伤检测,具有无损、快速等优点,能解决人工检测耗时耗力且准确率低的问题。在此主要概述了8种光谱及成像技术(近红外光谱、拉曼光谱、荧光光谱、高光谱成像、空间频域成像、核磁成像、X射线成像和热成像)在果蔬损伤检测的最新研究进展,包括检测原理及其技术特点,总结分析了各技术在果蔬损伤检测方面的应用情况,并展望未来发展趋势,以期为果蔬损伤无损检测提供借鉴与参考。  相似文献   

16.
Bambi Hu 《Physics Reports》1982,91(5):233-295
The methods of the real-space renormalization group, and their application to critical and chaotic phenomena are reviewed. The article consists of two parts: the first part deals with phase transitions and critical phenomena; the second part, bifurcations and transitions to chaos. We begin with an introduction to the phenomenology of phase transitions and critical phenomena. Seminal concepts such as scaling and universality, and their characterization by critical exponents are discussed. The basic ideas of the renormalization group are then explained. A survey of real-space renormalization-group methods: decimation, Migdal-Kadanoff approximation, cumulant and cluster expansions, is given. The Hamiltonian formulation of classical statistical systems into quantum mechanical systems by the method of the transfer matrix is introduced. Quantum renormalization-group methods of truncation and projection, and their application to the transcribed quantum mechanical Ising model in a transverse field are illustrated. Finally, the quantum cumulant-expansion method as applied to the one-dimensional quantum mechanical XY model is discussed. The second part of the article is devoted to the subject of bifurcations and transitions to chaos. The three most commonly discussed kinds of bifurcations: the pitchfork, tangent and Hopf bifurcations, and the associated routes to chaos: period doubling, intermittency and quasiperiodicity are discussed. Period doubling based on the logistic map is explained in detail. Universality and its expression in terms of functional renormalization-group equations is discussed. The Liapunov characteristic exponent and its analogy to the order parameter are introduced. The effect of external noise and its universal scaling feature are shown. The simplest characterizations of the Hénon strange attractor are intuitively illustrated. The purpose of this article is primarily pedagogical. The similarity between critical and chaotic phenomena is a recurrent theme that underlines the importance and usefulness of such concepts as scaling, renormalization and universality.  相似文献   

17.
黎胜  于丹竹 《声学学报》2016,41(6):820-832
结构振动和声辐射的可控性和可观性指标对有源控制系统作动器/传感器的布置具有重要意义。对结构振动和声辐射的可控性和可观性指标进行了研究,提出了基于声压输出的振动模态可观性指标,在振动模态可控性和可观性指标的基础上,结合振动模态的声辐射效率,提出了结构声辐射的可控性和可观性指标和基于声压输出的可观性指标。以板结构为例,对结构振动和声辐射的可控性和可观性指标进行了计算分析和讨论,比较了基于声压输出和基于振动响应输出的振动模态可观性,重点研究了基于声压输出的振动模态可观性和结构振动及声辐射的可观性特点,最后对指标值在结构声有源控制中输入(输出)位置选择上的应用进行了讨论和比较,通过数值仿真对指标的有效性进行了验证。   相似文献   

18.
多环芳烃(PAHs)类物质具有致畸、致癌、致突变的性质,严重污染生态环境,进而对人类的健康及动植物生长造成威胁。PAHs通过排污、大气沉降、地表径流等各种循环途径进入水环境中,由于种类众多且化学性质相似,常规的检测方法如化学滴定法、电化学法等很难实现快速准确的测定。为实现复杂体系中PAHs的定性与定量,工作中基于三维荧光光谱分析法,结合集合经验模态分解(EEMD)去噪与自加权交替三线性分解(SWATLD)二阶校正,对超纯水以及池塘水环境中的苊(ANA)和萘(NAP)进行分析测定。首先选择合理的浓度配制样本,用FS920荧光光谱仪测得样品的三维荧光光谱,利用空白扣除法将光谱数据中的散射消除,得到真实的光谱数据。然后对去除散射的数据进行EEMD降噪处理,该方法具有自适应性强、参数设置简便的优点,能够去除嘈杂信息,提高数据信噪比,并将去噪参数与快速傅里叶变换、小波滤波和经验模态分解进行比较。最后用SWATLD算法以“数学分离”代替“化学分离”,对超纯水和池塘水环境中光谱重叠的ANA和NAP进行定性识别和定量预测,该算法对组分数的选择不敏感,能够在未知干扰物共存情况下实现多组分目标分析物的同时检测,即具有“二阶优势”,并将预测结果与平行因子分析进行比较。结果表明空白扣除法能够成功将拉曼散射消除。EEMD降噪方法使ANA和NAP的光谱更加规整平滑,有效信息更加突出,该方法去噪后数据信噪比为16.845 2,均方根误差为11.136 6,波形相似系数为0.990 9,三项指标均优于快速傅里叶变换和经验模态分解等其他去噪方法,能达到小波滤波的去噪效果并且不用设置先验参数。利用SWATLD二阶校正方法得到验证样本中ANA与NAP的分解光谱与实际光谱基本吻合,平均预测回收率分别为96.4%和104.2%,预测均方根误差分别为0.105和0.092 μg·L-1;在存在未知干扰物的池塘水样本中,分解出的光谱依然能与实际光谱吻合,ANA与NAP两者的平均预测回收率分别为94.8%和105.5%,预测均方根误差分别为0.067和0.169 μg·L-1;与平行因子分析相比,两项指标均具有优势。  相似文献   

19.
利用新型的Thermo Scientific Gallery全自动水质分析仪,检测过程中自动完成加样本、读空白、加试剂、反应显色、比色检测和数据处理等步骤。检测方法来源于美国环保署标准水质检测方法。该仪器具有样品和试剂耗量少、灵敏度高、重复性好等优点,检测过程容易实现自动化、标准化和信息化,适用于水质和环境检测领域大量样品的快速检测。  相似文献   

20.
Early diagnosis of oral carcinomas is essential for successful treatment. The purpose of the present study is to apply near‐infrared Raman spectroscopy to detect oral squamous cell carcinoma (SCC) and leukoplakia (OLK), in order to establish the diagnostic model of the Raman spectra of oral diseases. We collected Raman spectra of normal, OLK and SCC by near‐infrared Fourier transform Raman spectroscopy. The biochemical variations between different lesions were analyzed by the characteristic bands in the subtracted mean spectra. Gaussian radial basis function support vector machines (SVM) were used to classify spectra and establish the diagnostic models. Major differences were observed in the range between 800 and 1800 cm−1. Compared with normal mucosa, high contents of protein, DNA and lipid in SCC and OLK were observed, but the difference between OLK and normal tissue was not as much as that between normal and SCC. SVM displayed a powerful ability in the classifying of normal and SCC, and the specificity, sensitivity and accuracy were 100, 97.56 and 98.75%, respectively. In discriminating between the OLK and normal groups, the three parameters were 85, 68 and 72.5%. The algorithm showed good ability in grouping and modeling of OLK and SCC, and the three parameters were 95, 97.43 and 96.25%. Combined with SVM, near‐infrared Raman spectroscopy can detect biochemical variations in oral normal mucosa, OLK and SCC, and establish diagnostic models accurately. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号