首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localized packet and which preserves this localization in time. A soliton is a solitary wave which exhibits some strong form of stability so that it has a particle-like behavior. In this paper, we prove a general, abstract theorem ( Theorem 26) which allows to prove the existence of a class of solitons. Such solitons are suitable minimizers of a constrained functional and they are called hylomorphic solitons. Then we apply the abstract theory to problems related to the nonlinear Schrödinger equation (NSE) and to the nonlinear Klein–Gordon equation (NKG).  相似文献   

2.
In this paper, the Maccari system is investigated, which is viewed as a two-dimensional extension of nonlinear Schrödinger equation. We derive doubly localized two-dimensional rogue waves on the dark solitons of the Maccari system with Kadomtsev–Petviashvili hierarchy reduction method. The two-dimensional rogue waves include line segment rogue waves and rogue-lump waves, which are localized in two-dimensional space and time. These rogue waves are generated by the resonant collision of rational solitary waves and dark solitons, the whole process of transforming elastic collision into resonant collision is analytically studied. Furthermore, we also discuss the local characteristics and asymptotic properties of these rogue waves. Simultaneously, the generating conditions of the line segment rogue wave and rogue-lump wave are also given, which provides the possibility to predict rogue wave. Finally, a new way to obtain the high-order rogue waves of the nonlinear Schrödinger equation are given by proper reduction from the semi-rational solutions of the Maccari system.  相似文献   

3.
We present a general result of transverse nonlinear instability of 1d solitary waves for Hamiltonian PDE's for both periodic or localized transverse perturbations. Our main structural assumption is that the linear part of the 1-d model and the transverse perturbation “have the same sign”. Our result applies to the generalized KP-I equation, the Nonlinear Schrödinger equation, the generalized Boussinesq system and the Zakharov–Kuznetsov equation and we hope that it may be useful in other contexts.  相似文献   

4.
Two nonlinear Schrödinger equations with variable coefficients are researched, and the various exact solutions (including the bright and dark solitary waves) of the nonlinear Schrödinger equations are obtained with the aid of a subsidiary elliptic-like equation (sub-ODEs for short), at the same time, the constraint conditions which the coefficients of the nonlinear Schrödinger equations with variable coefficients satisfy are presented. The exact solutions and the constraint conditions are helpful in the application of the nonlinear Schrödinger equations with variable coefficients studied in this paper.  相似文献   

5.
In this article we prove the existence of multi solitary waves of a fourth order Schrödinger equation (4NLS) which describes the motion of the vortex filament. These solutions behave at large time as sum of stable Hasimoto solitons. It is obtained by solving the system backward in time around a sequence of approximate multi solitary waves and showing convergence to a solution with the desired property. The new ingredients of the proof are modulation theory, virial identity adapted to 4NLS and energy estimates. Compare to NLS, 4NLS does not preserve Galilean transform which contributes the main difficulty in spectral analysis of the corresponding linearized operator around the Hasimoto solitons.  相似文献   

6.
Complex solitary wave solutions are obtained for higher-order nonlinear Schrödinger equation as a one-parameter, (C1) family of solutions. These solutions are found to be stable in a certain range of the parameter. It is observed that for C1<1, these stable waves propagate at faster bit rate than the solitons under the same input conditions. The complex solutions can also be obtained by the action of the nonlinear operator on the one-soliton solution.  相似文献   

7.
We provide a simple proof of the existence of dark solitons of the defocusing cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity. Moreover, our proof allows for a broader class of inhomogeneities and gives some new properties of the solutions. We also apply our approach to the defocusing cubic–quintic nonlinear Schrödinger equation with a periodic potential.  相似文献   

8.
Four kinds of exact solutions to nonlinear Schrödinger equation with two higher order nonlinear terms are obtained by a subsidiary ordinary differential equation method (sub-equation method for short). They are the bell type solitary waves, the kink type solitary waves, the algebraic solitary waves and the sinusoidal waves.  相似文献   

9.
This article is devoted to the study of nonlinear fractional Schrödinger equation with a Gaussian nonlocal response. We firstly prove the existence of solitary wave solutions by using the variational method and Mountain Pass Theorem. Numerical simulations are presented to verify the findings of the existence theorem. And we also investigate the impacts of Gaussian nonlocal response and fractional-order derivatives on the solitary waves, which enable us to perform control experiments for the development of rogue waves in quantum mechanics and optics.  相似文献   

10.
We consider the problem of a solitary wave propagation, in a slowly varying medium, for a variable-coefficients nonlinear Schrödinger equation. We prove global existence and uniqueness of solitary wave solutions for a large class of slowly varying media. Moreover, we describe for all time the behavior of these solutions, which include refracted and reflected solitary waves, depending on the initial energy.  相似文献   

11.
We develop the theoretical procedures for shifting the frequency of a single soliton and of a sequence of solitons of the nonlinear Schrödinger equation. The procedures are based on simple transformations of the soliton pattern in the Fourier domain and on the shape-preserving property of solitons. These theoretical frequency shifting procedures are verified by numerical simulations with the nonlinear Schrödinger equation using the split-step Fourier method. In order to demonstrate the use of the frequency shifting procedures, two important applications are presented: (1) stabilization of the propagation of solitons in waveguides with frequency dependent linear gain-loss; (2) induction of repeated soliton collisions in waveguides with weak cubic loss. The results of numerical simulations with the nonlinear Schrödinger model are in very good agreement with the theoretical predictions.  相似文献   

12.
In this paper, we introduce a new notion named as Schrödinger soliton. The so-called Schrödinger solitons are a class of solitary wave solutions to the Schrödinger flow equation from a Riemannian manifold or a Lorentzian manifold M into a Kähler manifold N. If the target manifold N admits a Killing potential, then the Schrödinger soliton reduces to a harmonic map with potential from M into N. Especially, when the domain manifold M is a Lorentzian manifold, the Schrödinger soliton is a wave map with potential into N. Then we apply the geometric energy method to this wave map system, and obtain the local well-posedness of the corresponding Cauchy problem as well as global existence in 1+1 dimension. As an application, we obtain the existence of Schrödinger soliton solution to the hyperbolic Ishimori system.  相似文献   

13.
In this paper, we study the solitary waves for the generalized nonautonomous dual-power nonlinear Schrödinger equations (DPNLS) with variable coefficients, which could be used to describe the saturation of the nonlinear refractive index and the solitons in photovoltaic-photorefractive ma- terials such as LiNbO3, as well as many nonlinear optics problems. We gen- eralize an explicit similarity transformation, which maps generalized nonau- tonomous DPNLS equations into ordinary autonomous DPNLS. Moreover, solitary waves of two concrete equations with space-quadratic potential and optical super-lattice potential are investigated.  相似文献   

14.
We prove that line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation are unstable under transverse perturbations of arbitrarily small periods, i.e., short waves. The analysis is based on the construction of Jost functions for the continuous spectrum of Schrödinger operators, the Sommerfeld radiation conditions, and the Lyapunov-Schmidt decomposition. We derive precise asymptotic expressions for the instability growth rate in the limit of short periods.  相似文献   

15.
We consider the nonlinear Schrödinger equation perturbed by the addition of a third-derivative term whose coefficient constitutes a small parameter. It is known from the work of Wai et al. [1] that this singular perturbation causes the solitary wave solution of the nonlinear Schrödinger equation to become nonlocal by the radiation of small-amplitude oscillatory waves. The calculation of the amplitude of these oscillatory waves requires the techniques of exponential asymptotics. This problem is re-examined here and the amplitude of the oscillatory waves calculated using the method of Borel summation. The results of Wai et al. [1] are modified and extended.  相似文献   

16.
In this work, we investigate the dynamics of modulated waves in a discrete coupled Left-Handed nonlinear transmission line, assuming a one-dimensional (1-D) propagation variation. A nonlinear Schrödinger equation (NLSE) is derived, analytical solitons are found and the instability region is presented for this model.  相似文献   

17.
We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schrödinger equations with defocusing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.  相似文献   

18.
In this paper, the topological 1-soliton solution of the nonlinear Schrödinger’s equation in 1 + 2 dimensions is obtained by the solitary wave ansatze method. These topological solitons are studied in the context of dark optical solitons. The type of nonlinearity that is considered is Kerr type.  相似文献   

19.
We describe a novel numerical approach to simulations of nonlinear Schrödinger equations with varying coefficients, based on the discovery of a new and intrinsic conservation law for varying coefficient nonlinear Schrödinger equations. The approach is shown to preserve some crucial classical conservations, such as the spatial ergodicity, and utilized in numerical simulations of periodically and quasi-periodically solitary waves for nonlinear Schrödinger equations with periodic or quasi-periodic coefficients. Some numerical experiments are presented to illustrate the conservative property.  相似文献   

20.
We apply the variational approximation to study the dynamics of solitary waves of the nonlinear Schrödinger equation with compensative cubic‐quintic nonlinearity for asymmetric 2‐dimension setup. Such an approach allows to study the behavior of the solitons trapped in quasisymmetric potentials without an axial symmetry. Our analytical consideration allows finding the soliton profiles that are stable in a quasisymmetric geometry. We show that small perturbations of such states lead to generation of the oscillatory‐bounded solutions having 2 independent eigenfrequencies relating to the quintic nonlinear parameter. The behavior of solutions with large amplitudes is studied numerically. The resonant case when the frequency of the time variations (time managed) potential is near of the eigenfrequencies is studied too. In a resonant situation, the solitons acquire a weak time decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号