首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) techniques are continually being assessed with a view to improving the quality of information obtained from a given sample. A single tissue section will typically only be analyzed once by MALDI MSI and is then either used for histological staining or discarded. In this study, we explore the idea of repeat analysis of a single tissue section by MALDI MSI as a route toward improving sensitivity, structural characterization, and diversity of detected analyte classes. Repeat analysis of a single tissue section from a fresh frozen mouse brain is investigated with both α-cyano-4-hydroxycinnamic acid (CHCA) and para-nitroaniline (PNA). Repeat analysis is then applied to the acquisition of MALDI MSI and MALDI tandem mass spectrometry imaging employing collision induced dissociation (MS/MS imaging employing CID) from a formalin-fixed mouse brain section. Finally, both lipid and protein data are acquired from the same tissue section via repeat analysis utilizing CHCA, sinapinic acid (SA), and a tissue wash step. PNA was found to outperform CHCA as a matrix for repeat analysis; multiple lipids were identified using MS/MS imaging; both lipid and protein images were successfully acquired from a single tissue section.
Figure
Repeat analysis by MALDI MS imaging of a single tissue section is investigated with multiple matrices and tissue washes to provide increased molecular information from a single tissue section  相似文献   

2.
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Figure
?  相似文献   

3.
A large number of matrix substances have been used for various applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The majority of matrices applied in ultraviolet-MALDI MS are crystalline, low molecular weight compounds. A problem encountered with many of these matrices is the formation of hot spots, which lead to inhomogeneous samples, thus leading to increased measurement times and hampering the application of MALDI MS for quantitative purposes. Recently, ionic (liquid) matrices (ILM or IM) have been introduced as a potential alternative to the classical crystalline matrices. ILM are equimolar mixtures of conventional MALDI matrix compounds such as 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CCA) or sinapinic acid (SA) together with organic bases [e.g., pyridine (Py), tributylamine (TBA) or N,N-dimethylethylenediamine (DMED)]. The present article presents a first overview of this new class of matrices. Characteristic properties of ILM, their influence on mass spectrometric parameters such as sensitivity, resolution and adduct formation and their application in the fields of proteome analysis, the measurement of low molecular weight compounds, the use of MALDI MS for quantitative purposes and in MALDI imaging will be presented. Scopes and limitations for the application of ILM are discussed.  相似文献   

4.
Matrix-enhanced surface-assisted laser desorption ionization mass spectrometry imaging (ME-SALDI MSI) has been previously demonstrated as a viable approach to improving MS imaging sensitivity. We describe here the employment of ionic matrices to replace conventional MALDI matrices as the coating layer with the aims of reducing analyte redistribution during sample preparation and improving matrix vacuum stability during imaging. In this study, CHCA/ANI (α-cyano-4-hydroxycinnamic acid/aniline) was deposited atop tissue samples through sublimation to eliminate redistribution of analytes of interest on the tissue surface. The resulting film was visually homogeneous under an optical microscope. Excellent vacuum stability of the ionic matrix was quantitatively compared with the conventional matrix. The subsequently improved ionization efficiency of the analytes over traditional MALDI was demonstrated. The benefits of using the ionic matrix in MS imaging were apparent in the analysis of garlic tissue sections in the ME-SALDI MSI mode.  相似文献   

5.
para-Nitroaniline (PNA) is presented as a promising matrix for matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) on an intermediate-pressure ion source (~1 Torr) QqTOF instrument using an Nd:YVO4 laser operated at 5 kHz. An imaging study was carried out to determine the utility of PNA at this pressure by analyzing 14 tissue sections. We demonstrate acquisition of high-quality imaging data over a 6-h period in the ion source. In this study, comparisons were made between PNA and α-cyano-4-hydroxycinnamic acid (CHCA) in positive ion mode to demonstrate the utility of PNA in these circumstances. PNA performed as well as or better than CHCA in terms of lipid ion intensities, resulting in lower levels of ion fragmentation and in lower incidences of analyte migration at the edges of the tissue sections when using airspray matrix deposition.   相似文献   

6.
Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.
Figure
  相似文献   

7.
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M+n+n′ matrix+H]+ or [M+n+n′ matrix+Na]+ (n = the number of cysteine residues, n′=1, 2,…, n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, α-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and α-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated. In general, this method is fast, effective, and robust to identify disulfide bonds in proteins/peptides.  相似文献   

8.
The use of collision-induced dissociation, postsource decay (CID-PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of small organic molecules is demonstrated. Three pesticides: paraquat, diquat, and difenzoquat were chosen for this study. The matrices 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA), and sinapinic acid (SA) were selected to investigate the effect of the matrix on the CID-PSD MALDI spectra of these molecules. Alpha-CHCA and DHB were found to be appropriate matrices for the pesticides studied. Spectra for a given pesticide obtained from different matrices were compared with each other, and the differences between them are discussed. A comparison of CID-PSD MALDI with fast-atom bombardment MS/MS spectra is presented; the agreement of pesticide fragmentation patterns between the two methods indicates that CID-PSD MALDI MS is a reliable and efficient technique for structural elucidation of small molecules.  相似文献   

9.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used successfully to detect phosphorylation sites in proteins. Applications may be limited by the low response of phosphopeptides compared to nonphosphorylated peptides in MALDI MS. The addition of ammonium salts to the matrix/analyte solution substantially enhances the signal for phosphopeptides. In examples shown for equimolar mixtures, the phosphorylated peptide peaks become the largest peaks in the spectrum upon ammonium ion addition. This can allow for the identification of phosphopeptides in an unfractionated proteolytic digestion mixture. Sufficient numbers of protonated phosphopeptides can be generated such that they can be subjected to postsource decay analysis, in order to confirm the number of phosphate groups present. The approach works well with the common MALDI matrices such as α-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid, and with ammonium salts such as diammonium citrate and ammonium acetate.  相似文献   

10.
In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.
Figure
?  相似文献   

11.
The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 μm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.
Figure
?  相似文献   

12.
As a new approach to rapid small-molecule analysis, surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF-MS) was successfully used in the analysis of caffeine and the vitamins riboflavin, nicotinamide, and pyridoxine in various energy drinks. Of five common MALDI matrices tested (α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, dithranol, and 2′,4′,6′-trihydroxyacetophenone), α-cyano-4-hydroxycinnamic acid was found to be most suitable for analysis of high-sugar-containing energy drinks. Cetyltrimethylammonium bromide (CTAB) surfactant was used as a matrix-ion suppressor, at a matrix:surfactant mole ratio of approximately 500:1. The resulting mass spectra show very few matrix-related ions, while analyte signals were clearly observed. For comparative purposes the same analytes were identified and quantified in energy drinks by LC–ESI–MS with UV detection. Quantitatively the calibration curves of all four analytes showed a marked improvement when the surfactant-mediated method was used compared with traditional MALDI–TOF-MS; correlation coefficients of 0.989 (nicotinamide), 0.991 (pyridoxine), 0.983(caffeine) and 0.987 (riboflavin) were obtained. It was found that in quantitation of the energy drink analytes the surfactant-mediated MALDI–TOF-MS results were comparable with those from LC analysis. In reproducibility experiments RSD values ranged from 9.7 to 18.1%. The work has demonstrated that this mass spectrometric approach can be used as a rapid screening technique for fortified drinks.  相似文献   

13.
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.
Graphical Abstract ?
  相似文献   

14.
Protein matrices such as 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA) and a-cyano-4-hydroxycinnamic acid (CHCA) tend to yield homogeneous dried spots. However, well known MALDI matrices for single- and double-stranded DNA such as 3-hydroxy picolinic acid (HPA) and picolinic acid (PA) forms the crystals at the rim of their spots with uneven distribution of matrix and DNA. This inhomogeneous deposition of DNA-doped matrix crystals at the MALDI spot requires a search for sweet spots. It is important to obtain homogeneous MALDI spots that yield signals not only from the periphery but the entire spot for automated, high throughput MALDI-TOF analysis of short DNA fragments. We have investigated the characteristics of MALDI matrices for DNA and presented a method for improving the homogeneity of MALDI samples by using polymer substrates such as linear polyacrylamide (LPA), poly(ethylene oxide) (PEO), methyl cellulose (MC) and Nafion.  相似文献   

15.
The ability of MALDI-MS to analyze photolabile arylazido peptide derivatives was investigated. Peptides containing UV-labile p-azidobenzoyl groups were subjected to MALDI-MS analysis in a variety of matrices. As standard MALDI-MS employs a UV laser (337 nm), we investigated conditions that would allow detection of the intact molecule ions for these light-sensitive peptides. When using α-cyano-4-hydroxycinnamic acid (ACHC) or 2,5 dihydroxybenzoic acid (DHB) as the matrix, photoinduced degradation products were prevalent. In contrast, when employing the matrix sinapinic acid, the intact molecule ion corresponding with the azido peptide was the predominant signal. The protection of photolabile azido derivatives correlates with the UV absorbance properties of the matrix employed, i.e., sinapinic acid, which exhibits a strong absorbance near 337 nm, most efficiently protects the azido derivative from photodegradation.  相似文献   

16.
We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system (Int. J. Mass Spectrom. 315, 66–73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.
Figure
?  相似文献   

17.
Bacteriochlorophyll a (BChl a), a photosynthetic pigment performing the same functions of chlorophylls in plants, features a bacteriochlorin macrocycle ring (18 π electrons) with two reduced pyrrole rings along with a hydrophobic terpenoid side chain (i.e., the phytol residue). Chlorophylls analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is not so straightforward since pheophytinization (i.e., release of the central metal ion) and cleavage of the phytol–ester linkage are invariably observed by employing protonating matrices such as 2,5-dihydroxybenzoic acid, sinapinic acid, and α-cyano-4-hydroxycinnamic acid. Using BChl a from Rhodobacter sphaeroides R26 strain as a model system, different electron-transfer (ET) secondary reaction matrices, leading to the formation of almost stable radical ions in both positive ([M]+?) and negative ([M]??) ionization modes at m/z 910.55, were evaluated. Compared with ET matrices such as trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), 2,2':5',2''-terthiophene (TER), anthracene (ANT), and 9,10-diphenylanthracene (DP-ANT), 1,5-diaminonaphthalene (DAN) was found to provide the highest ionization yield with a negligible fragmentation. DAN also displayed excellent ionization properties for two metal ion-substituted bacteriochlorophylls, (i.e., Zn- and Cu-BChl a at m/z 950.49 and 949.49), respectively. MALDI MS/MS of both radical charged molecular species provide complementary information, thus making analyte identification more straightforward.
Graphical Abstract ?
  相似文献   

18.
We report 2-mercaptobenzothiazole (MBT) and its analogs as a class of new matrices for matrix-assisted laser desorption mass spectrometry (MALDI-MS) at 337 nm. MBT has been used successfully for the desorption of proteins up to 100,000 u. A comparison with sinapinic acid and α-cyano-4-hydroxycinnamic acid indicates that MBT provides the same level of sensitivity and resolution, but offers the advantage of higher tolerance to sample contaminants such as ionic detergents. 5-Chloro-2-mercaptobenzothiazole (CMBT), an analog of MBT, has been found not only effective for the analysis of peptides, low-mass proteins, and glycolipids, but also superior to conventional matrices for the analysis of muropeptides and at least some oligosaccharides. CMBT also exhibits excellent experimental reproducibility of MALDI-MS results owing to the homogeneous crystallization of the analyte/matrix mixture over the entire sample surface area. Finally, all five mercaptobenzothiazoles studied in this work are shown to be well suited for synthetic polymer analysis.  相似文献   

19.
The spatial distribution of proteins in tissue sections can be used to identify potential markers for pathological processes. Tissue sections are often subjected to enzymatic digestion before matrix‐assisted laser desorption/ionization (MALDI) imaging. This study is targeted at improving the on‐tissue identification of tryptic peptides by accurate mass measurements and complementary off‐line liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) analysis. Two adjacent mouse brain sections were analyzed in parallel. The first section was spotted with trypsin and analyzed by MALDI imaging. Direct on‐tissue MS/MS experiments of this section resulted in the identification of 14 peptides (originating from 4 proteins). The second tissue section was homogenized, fractionated by ultracentrifugation and digested with trypsin prior to LC/ESI‐MS/MS analysis. The number of identified peptides was increased to 153 (corresponding to 106 proteins) by matching imaged mass peaks to peptides which were identified in these LC/ESI‐MS/MS experiments. All results (including MALDI imaging data) were based on accurate mass measurements (RMS <2 ppm) and allow a confident identification of tryptic peptides. Measurements based on lower accuracy would have led to ambiguous or misleading results. MS images of identified peptides were generated with a bin width (mass range used for image generation) of Δm/z = 0.01. The application of accurate mass measurements and additional LC/MS measurements increased both the quality and the number of peptide identifications. The advantages of this approach for the analysis of biological tissue sections are demonstrated and discussed in detail. Results indicate that accurate mass measurements are needed for confident identification and specific image generation of tryptic peptides in tissue sections. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号