首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A procedure was developed for the determination of the adhesion characteristics of the modified surface of thin polymer films, including those treated in a low-temperature plasma, with the use of the Scotch® 810 adhesive tape. The procedure comprises coating the surface to be studied by physical vapor deposition with an aluminum layer of ~100 nm thickness, making an adhesive joint of the film with the Scotch® 810 tape, and T-peel testing of the specimen. Using this procedure, the peel resistance of the initial PTFE film and the film modified at the cathode and the anode in dc discharge was measured.  相似文献   

2.
医用多孔NiTi合金表面溶胶-凝胶法制备TiO2涂层   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法结合浸渍提拉工艺在多孔NiTi合金表面制备出了结构均一的锐钛矿型TiO2涂层,并在溶胶中添加聚乙二醇(PEG)作为造孔剂,进而在多孔NiTi合金表面制备出内层致密、外层多孔的TiO2复合涂层。SEM分析结果表明,TiO2涂层均匀地覆盖了多孔NiTi合金基体的外表面以及孔的内表面。Hanks溶液中的阳极极化曲线结果表明,与未处理的多孔NiTi合金相比,具有致密TiO2涂层的多孔NiTi合金其耐腐蚀性能有了显著提高。而多孔TiO2复合涂层进一步增大了多孔NiTi合金的实际表面积,提高了材料表面的生物活性。  相似文献   

3.
Porous titania film is prepared by alkali treatment of NiTi alloy followed by soaking treatment in HCl solution. The benefit of this porous titania film as an interlayer to improve adhesion and integrity of the sol–gel titania coating on NiTi alloy substrate is evidenced by surface morphological observations. X-ray diffraction analyses indicate the formation of Ni4Ti3 phase in the matrix during heat treatment of the NiTi samples. X-ray photoelectron spectroscopy results indicate that the titania coating with two dip-coating layers has completely covered the NaOH–HCl treated NiTi substrate, and potentiodynamic polarization tests show that this titania coating provides good protection for the treated NiTi substrate in 0.9% NaCl solution. Ultraviolet illumination can increase surface hydrophilicity of the NiTi samples by reducing contact angles from 60–80° to 20–10°.  相似文献   

4.
利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。  相似文献   

5.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy. © 2021 Authors. All rights reserved.  相似文献   

7.
Results of studies aimed at developing a new approach to measuring stress-strain properties of nanosized solids (strength, yield stress, and the value of plastic deformation at uniaxial tension) are generalized. This approach is based on the analysis of the parameters of microrelief arising upon the deformation of polymer films with thin coatings. It is demonstrated for the first time that the stress-strain properties of aluminum coatings deposited onto Lavsan substrates depend on the level of stresses in the substrate, the value of its deformation, and the thickness of the coating. The evolution of these parameters is related to the strain hardening of metal and the effect of nanostructuring of crystalline materials in the range of small thicknesses. When precious metal (Au, Pt) nanosized films are deposited onto polymers by ion-plasma sputtering, in the course of metal deposition, polymer surface layers interact with cold plasma. Stress-strain properties of polymer surface layers modified by plasma are quantitatively estimated for the first time. The model is proposed that makes it possible to take into account the contribution of the properties of precious metal and plasma-modified polymer surface layer to the strength of the coating.  相似文献   

8.
块状壳聚糖多孔支架内交替浸渍沉积磷灰石层   总被引:2,自引:0,他引:2  
在聚合物支架内沉积羟基磷灰石涂层有望提高支架的生物活性和骨传导性. 本研究采用交替浸渍沉积法, 以块状壳聚糖(Cs)三维多孔支架为沉积模板, 在氯化钙溶液和磷酸氢二钠溶液中交替浸渍, 沉积了羟基磷灰石(HA)涂层. 应用XRD、FT-IR、SEM、孔隙率测试、焙烧法和压缩实验对沉积前后支架的组成、形貌、孔隙率、无机物沉积量以及压缩强度进行了表征. 研究结果表明, 支架上沉积物为低结晶度的碳酸羟基磷灰石, 沿c轴择优生长, 与天然骨中磷灰石类似. 扫描电镜照片显示, 磷灰石在支架孔壁上的沉积量呈梯度分布, 外部沉积量多于内部, 靠近支架表面孔隙部分堵塞, 但内部仍保持连通的孔隙结构. 经6次交替浸渍处理的支架, 孔隙率为94.0%, 羟基磷灰石沉积量达到总质量的13.5%, 压缩强度则由0.055 MPa提高到0.109 MPa.  相似文献   

9.
In this work, zinc–hydroxyapatite (Zn–HA) and zinc–hydroxyapatite–titania (Zn–HA–TiO2) nanocomposite coatings were electrodeposited onto a NiTi shape memory alloy, using a chloride zinc plating bath. The structure of the composite coatings was characterized by X‐ray diffraction, scanning electron microscopy and high‐resolution transmission electron microscopy. According to the results, the Zn–HA–TiO2 coating exhibited a plate‐like surface morphology, where the addition of the nanoparticles caused to an increase in roughness. It was also found that due to applying a proper stirring procedure during co‐deposition, a homogenous dispersion of the nanoparticles in the coatings was achieved. Also, the addition of the TiO2 nanoparticles to the Zn–HA–TiO2 coating enhanced the microhardness and wear resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Polypropylene (PP) films were modified in 1,2-dichloroethane (DCE) plasma. Surface energy measurement and rate of deposition showed two-step surface modification. First, incorporation of chloride ions on PP surface followed by deposition of cross-linked layer. DCE plasma modified PP films were subsequently compared with earlier reported work on carbontetrachloride (CCl4) and chloroform (CHCl3) plasma modification. Modified films were characterized using ATR-FTIR technique by monitoring the relative changes in intensities of C–H stretch vibrations. The nature of deposition on PP film was characterized using FTIR technique and solubility test. Peel strength measurements of DCE, CCl4, and CHCl3 plasma modified films showed improvement in bonding strength. Durability of plasma modified PP film was studied by calculating surface energy and peel strength of samples aged for two months.  相似文献   

11.
Corrosion resistance of stainless steel and Zn plated steel can be improved by a chromium-free environmentally friendly chemical solution deposition method. Precursor solutions were prepared from tetraethoxysilane with polymer, and were deposited on stainless steel, Zn plated steel and aluminum alloy by dip coating, followed by heat treatment. Addition of polymer to the precursor solution proved very effective in preparing films free from cracks on stainless steel and aluminum alloy substrates. The corrosion resistance was greatly improved by the resulting sub-micron thick silica-polymer hybrid film coatings on stainless steel and on Zn plated steel prepared at 200°C. The hardness of aluminum alloy coated with silica-PMMA hybrid film was improved by 7% over uncoated alloy.  相似文献   

12.
The biomedical application of carbon/carbon (C/C) composites is limited by lacking bioactivity and releasing carbon debris. Hydroxyapatite (HA) coating has been used to improve the bioactivity of C/C composites, but it cannot reduce the release of carbon debris effectively because of poor wear resistance property. In this work, a wear‐resistant layer of diamond like carbon (DLC) is applied on C/C composites, followed by an ultrasound‐assisted electrochemical deposition to prepare HA coatings. The microstructure, morphology and chemical composition of the DLC layer and the HA coating are characterised by scanning electron microscopy, X‐ray diffraction, energy dispersive spectroscopy (EDS), X‐ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Raman spectrum. The bonding strength between the HA coating and the DLC layer modified C/C composites is examined by a tensile test. The results show that the DLC layer has a spherical morphology and provides a uniform surface for the deposition of the HA coating. The HA coating shows flaky morphology with a compact structure. The tensile strength of the HA coating on the DLC layer modified C/C composites is 6.24 ± 0.40 MPa, which is significantly higher than that of HA coating on unmodified C/C composites(3.04 ± 0.20 MPa). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The surface of a titanium (Ti) alloy substrate was modified by a simple and quick process using a water-soluble polymer, and the effects of 3,4-dihydroxyphenyl (DHP) groups in the polymer side chain on the modification process were examined. The polymers (PMDP) composed of both 2-methacryloyloxyethyl phosphorylcholine (MPC) unit and 3,4-dihydroxyphenyl methacrylate unit were synthesized for surface anchoring. The Ti alloy substrate was coated with PMDP using an aqueous solution of the polymer. A PMDP layer with a thickness of 20 nm was formed on the Ti alloy substrate simply by dip coating for 10 s without drying. Even when the Ti alloy substrate with PMDP coating was immersed in the aqueous medium for 1 week, no change in the thickness was observed, i.e., the PMDP layer was bound to the surface very stably. Oxidation of the DHP groups reduced the stability of the polymer layer significantly. Thus, the DHP groups play a significant role in achieving stable binding. Protein was adsorbed on the Ti alloy substrate; however, this was not observed for the PMDP-coated Ti alloy substrate. In conclusion, we confirmed the effects of DHP groups in PMDP on the stability of the coating on the Ti alloy substrate. Moreover, we found that surface treatment using PMDP was simple, quick, and reliable, and thus, it has great potential for improving biofouling of Ti alloy substrates used in medical devices.  相似文献   

14.
The structure of the surface layer in polymers (LDPE and PET) decorated with a thin metal (gold and platinum) layer was studied after their deformation under different conditions. It was found that relatively thick coatings debonded from the polymer substrate during tensile drawing. Debonding was observed at low tensile strains (below 20–30%). During the further drawing of a polymer, a regular microrelief typical of deformable “rigid coating on a soft substrate” systems appeared on its surface. This phenomenon is explained by the fact that the debonding metal coating uncovers not the surface of the pure polymer but a certain modified layer, which has a higher elastic modulus than the pure polymer. The formation of this layer is associated with the inclusion of metal atoms into the polymer during the metal decoration by plasma immersion ion deposition. As a result of this inclusion, a modified layer, which has a higher glass transition temperature, a higher elastic modulus, and other mechanical properties, is formed between the coating and the polymer.  相似文献   

15.
CaP/壳聚糖复合膜层的电化学共沉积研究   总被引:9,自引:0,他引:9  
用电化学共沉积方法在医用钛合金表面成功制备了CaP/壳聚糖复合膜层,并用XRD,SEM,FTIR漫反射光谱和XPS等对复合膜层化学组成及结构进行表征.结果表明,加入壳聚糖可使钙磷沉积层结构发生显著变化,将壳聚糖掺入钙磷沉积层,形成CaP/壳聚糖复合物和杂化物.力学实验表明,在钛基底表面未进行表面预处理条件下,CaP/壳聚糖复合膜层与钛基底的结合力高达2.6MPa,比单一CaP电化学沉积层与基底的结合力提高约4倍.文中还对壳聚糖参与表面电沉积反应机理进行了讨论.  相似文献   

16.
以丙烯酸丁酯(BA)和醋酸乙烯酯(VAc)为单体,对VAc与乙烯的共聚乳液(VAE)进行改性,通过乳液聚合制备了半互穿聚合物网络BVV.考察了乳化剂、交联剂、引发剂以及反应时间等条件对转化率及BVV稳定性的影响.BVV的剥离力度及其乳胶膜的吸水率的测定结果证明BVV耐水性及粘接强度较VAE明显增强.光学显微镜照片显示BVV的互穿结构已经形成.  相似文献   

17.
The surface properties of three undecyl oxazoline homopolymers and two phenyl/undecyl oxazoline block copolymers (as comparison) were studied. After coating on glass slides and annealing, all films had a low critical surface energy of 21 dynes/cm. Water contact angles were higher than 107° for the most hydrophobic films. The deduction that the polymer surfaces contained close-packed methyl groups was further confirmed by electron spectroscopy chemical analysis (ESCA) angle profiling on an annealed undecyl oxazoline homopolymer film. A model was developed for the variation of elemental ratios as a function of photoelectron take-off angle. This verified that the polymer films had the polymer backbones parallel to the surface with the undecyl tails oriented toward the surface. When these block and homopolymers were coated on copy paper and glass slides, the peel strengths of pressure-sensitive adhesives with these surfaces were very low for short dwell times at room temperature. At long dwell times or at elevated temperatures, the peel strengths remained low for the homopolymers but increased greatly for the block copolymers to values higher than those in the tape on glass. After 24 h at 70°C, ESCA analysis showed that the adhesive diffused into the phenyl block domains of the diblock copolymer, generating high peel strength and cohesive failure. However, under the same annealing conditions, the triblock copolymer showed adhesive failure while peel strength increased. ESCA analysis showed very litle diffusion of the adhesive into the triblock copolymer. The homopolymers were stable toward vinyl acetate type adhesives even at elevated temperature; they were abhesive up to 100°C with no interdiffusion.  相似文献   

18.
A newly proposed microscopic procedure makes it possible to estimate the strength of thin (nano-metric) coatings deposited onto various polymer supports. The strength of the deposited coating is shown to increase dramatically when the thickness of the coating decreases below 15 nm. It was also found that the strength of the coatings is controlled by the physical state of the polymer support. The Interfacial layer formed at the early stages of metal deposition onto the polymer surface is characterized by a higher strength as compared with that of a pure metal deposited onto the above interfacial layer. This observation can be explained by the following reasons: first, the dimensions of metallic grains in the interfacial layer are much smaller than those in a pure metal and, second, the intergrain space in the interfacial layer is filled with polymer matrix. At the same time, both the temperature and the adsorptionally active liquid medium affect polymer partitions in the interfacial composite layer and thus control the overall strength of thin coatings (≤15 nm). In the case of thicker coatings, the strength of the coating gradually decreases independently of the nature and state of the supporting polymer and approaches the strength of the bulk metal.  相似文献   

19.
Acetonitrile and acrylonitrile were plasma polymerized on Polypropylene (PP) surface. Surface modifications were characterized by surface energy measurements and ATR-FTIR spectroscopy. Surface energy measurement showed incorporation of hydrophilic groups along with deposition of cross-linked network of plasma-polymerized product. ATR-FTIR analysis of modified films showed incorporation of conjugated imine and amine groups. Using change in the relative intensities of C—H stretch bands of polypropylene surface, site of attachment of hydrophilic group and most predominant surface chemical reaction could be inferred. Chemical nature of plasma polymerized product was studied using FTIR by KBr disc method. Adhesion test was performed on modified surface by peel test method. Surface energy and peel strength measurements were performed for the samples aged for 2 months in order to check the durability of surface modification.  相似文献   

20.
A molecular imaging application was developed to characterize the drug distribution on CYPHER® and NEVO? Drug‐eluting Stents using MALDI Qq‐ToF analytical methodology. The coating matrix, laser energy, laser frequency, spatial resolution (related to rastering speed) and mass spectrometer parameters were optimized to analyze drug distribution in both durable and biodegradable polymer matrices. The developed method was extended to generate data from stents explanted from porcine coronary arteries. Due to the method's intrinsic specificity, it offers a significant advantage over other techniques in that it allows low‐level detection of the target molecule without biological interferences from the blood or tissue. The method is also capable of detecting drug‐related degradation products both from the finished stent product and from explanted stents. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号