首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The yield and energy distribution of Cs atoms from cesium layers adsorbed on germanium-coated tungsten were measured, using the time-of-flight technique with a surface-ionization-based detector, as a function of the energy of bombarding electrons, germanium film thickness, the amount of adsorbed cesium, and substrate temperature. The threshold for the appearance of Cs atoms is ~30 eV, which correlates well with the germanium 3d-level ionization energy. As the electron energy increases, the Cs atom yield passes through a broad maximum at ~120 eV. For germanium film thicknesses from 0.5 to 2 monolayers, resonance Cs yield peaks were observed at electron energies of 50 and 80 eV, which can be related to the tungsten 5p and 5s core-level ionization energies. As the cesium coverage increases, the Cs atom yield passes through a flat maximum at monolayer coverage. The energy distribution of Cs atoms follows a bell-shaped curve. With increasing cesium coverage, this curve shifts to higher energies for thin germanium films and to lower energies for thick films. The Cs energy distribution measured at a substrate temperature T = 160 K exhibits two bell-shaped peaks, namely, a narrow peak with a maximum at ~0.35 eV, associated with tungsten core-level excitation, and a broad peak with a maximum at ~0.5 eV, deriving from the excitation of the germanium 3d core level. The results obtained can be described within a model of Auger-stimulated desorption.  相似文献   

2.
V.N. Ageev  T.E. Madey 《Surface science》2006,600(10):2163-2170
The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.  相似文献   

3.
The electron-stimulated desorption (ESD) yields and energy distributions for potassium (K) and cesium (Cs) atoms have been measured from K and Cs layers adsorbed at 300 K on oxidized molybdenum surfaces with various degrees of oxidation. The measurements were carried out using a time-of-flight method and surface ionization detector. The ESD appearance threshold for K and Cs atoms is independent of the molybdenum oxidation state and is close to the oxygen 2s level ionization energy of 25 eV. Additional thresholds for both K and Cs atoms are observed at about 40 and 70 eV in ESD from layers adsorbed on an oxygen monolayer-covered molybdenum surface; they are associated with resonance processes involving Mo 4p and 4s excitations. The ESD energy distributions for K and Cs atoms consist of single peaks. The most probable kinetic energy of atoms decreases in going from cesium to potassium and with increasing adsorbed metal concentration; it lies in the energy range around 0.35 eV. The K and Cs atom ESD energy distributions from adlayers on an oxygen monolayer-covered molybdenum surface are extended toward very low kinetic energies. The data can be interpreted by means of the Auger stimulated desorption model, in which neutralization of adsorbed alkali-metal ions occurs after filling of holes created by incident electrons in the O 2s, Mo 4s or Mo 4p levels.  相似文献   

4.
Auger electron spectroscopy of cesium adsorbed on clean W(100) shows that the well known N4,5O2,3O2,3 peak can be resolved into three peaks at 43–45.8 and 48.4 eV. Simultaneously as well defined peak appears at 62 eV and it is shown that this transition involves ionization of the N4N5 cesium level. An additional peak appears at 56.5 eV as cesium adsorbs on a previously oxygen-covered W(100) surface. Its existence is discussed and might indicate that oxygen valence electrons are involved in this new transition.  相似文献   

5.
It has been shown that deposition of Sm atoms on W(100) surface coated by several monolayers of gold and cesium affects noticeably the yield of Cs atoms in electron-stimulated desorption (ESD) from this surface. The measurements have been performed by the time-of-flight method with a surface-ionization detector. The paper reports on the first observation of ESD of Sm atoms from the tungsten surface coated by layers of gold and cesium. The ESD threshold for Sm atoms, E e = 57 eV, coincides with that for Cs atoms and corresponds to the energy of the Au 5p 3/2 core level. The dependence of the ESD yield of Sm atoms on the bombarding electron energy E e follows a resonance pattern in the form of a narrow peak located in the range 57 ≤ E e ≤ 66 eV. Deposition of Sm atoms at room temperature (~300 K) reduces (by a factor of about two) the ESD yield of Cs atoms for 600 s, and deposition of Sm atoms at 160 K reduces the ESD of Cs atoms down to zero already for 270 s. This difference finds explanation in the study of the change the structure of the top layer of the (Au + Cs)/W surface coating undergoes under cooling of the surface from 300 to 160 K.  相似文献   

6.
This paper reports on a continuation of the investigation of electron-stimulated Cs-atom desorption from a tungsten surface on which cesium and gold films had been adsorbed at T = 300 K. Earlier studies revealed that Cs atoms start to desorb only after more than one monolayer of gold and more than one monolayer of cesium had been deposited on the tungsten surface. In this case, a coating consisting of a gold adlayer on tungsten, a CsAu compound possessing semiconducting properties, and a cesium monolayer capping CsAu (Cs/CsAu/Au/W) is formed on the tungsten surface at 300 K. The yield of atoms from this system exhibits a resonant dependence on the incident electron energy E e , with an appearance threshold of 57 eV and a maximum at 64 eV. In this case, Cs atoms desorb in two channels, with one of them involving Cs desorption out of the cesium monolayer, and the other, from the CsAu monolayer. The Cs yield at E e = 64 eV has been investigated in both desorption channels, with an additional cesium coating deposited on the already formed Cs/CsAu/Au/W layered system, as well as of the effect annealing produces on the yield and energy distributions of Cs atoms. It has been demonstrated that Cs atoms evaporated at 300 K on a layered coating with a cesium monolayer atop the CsAu layer on tungsten capped with a gold adlayer, rather than reflected from the cesium monolayer or adsorbing on it, penetrate through the cesium monolayer into the bulk of CsAu even with one CsAu layer present. The desorption yield does not vary with increasing cesium concentration at 300 K, but falls off gradually at 160 K. Annealing within the temperature range 320 K ≤ T H ≤ 400 K destroys the cesium monolayer and the one-layer CsAu coating, but the multilayer CsAu compound does not break up in this temperature range even after evaporation of the cesium monolayer. It is shown that Cs atoms escape from the multilayer CsAu compound primarily out of the top CsAu layer.  相似文献   

7.
Comparative studies are carried out of the Cs/O/W(110) and Cs/W(110) adsorption systems. The method of threshold photoemission spectroscopy is used to study the work function and electronic structure in the energy region near the Fermi level as functions of the sub-monolayer cesium coverage. A significant increase of the saturation cesium coverage is observed on the O/W(110) surface. A new adsorption-induced surface band is observed in the electronic spectrum of the system Cs/O/W(110) with a binding energy ∼0.7 eV. For coverages of about one monolayer metallization of the adsorbed layer is observed. It is shown that the electronic structures of the systems Cs/O/W(110) and Cs/W(110) are similar for low coverages. A difference in the adsorption properties for these two systems occurs for coverages close to one monolayer, which is explained by the creation of new interaction centers of the Cs adatoms on the W(110) surface in the presence of oxygen. Fiz. Tverd. Tela (St. Petersburg) 39, 1683–1686 (September 1997)  相似文献   

8.
Kinetic energy distributions of helium ions produced by field ionization above the (100), (110), and (111) planes of tungsten field emitters are reported. The energy resolution of these measurements if 0.3 eV fwhm. The main peak of these distributions is found to shift by as much as 0.7 eV at F = 5.3 V/A?, T = 21 K, when the origin of the ions collected is changed slightly. Several possible explanations for this shift are discussed. The most plausible of these involves electron tunneling through a field adsorbed helium atom. These results have important implications for the use of field ion energy distributions as a probe of the density of electronic states of the emitter.  相似文献   

9.
The yield and energy distributions of lithium atoms upon electron-stimulated desorption from lithium layers adsorbed on the molybdenum surface coated with an oxygen monolayer have been measured as functions of the impact electron energy and lithium coverage. The measurements are performed using the time-of-flight technique and a surface ionization detector. The threshold of the electron-stimulated desorption of lithium atoms is equal to 25 eV, which is close to the ionization energy of the O 2s level. Above a threshold of 25 eV, the yield of lithium atoms linearly increases with an increase in the lithium coverage. In the coverage range from 0 to 0.45, an additional threshold is observed at an energy of 55 eV. This threshold can be associated with the ionization energy of the Li 1s level. At the electron energies above a threshold of 55 eV, as the coverage increases, the yield of lithium atoms passes through a maximum at a coverage of about 0.1. Additional thresholds for the electron-stimulated desorption of the lithium atoms are observed at electron energies of 40 and 70 eV for the coverages larger than 0.6 and 0.75, respectively. These thresholds correlate with the ionization energies of the Mo 4s and Mo 4p levels. Relatively broad peaks in the range of these thresholds indicate the resonance excitation of the bond and can be explained by the excitation of electrons toward the band of free states above the Fermi level. The mean kinetic energy of the lithium atoms is equal to several tenths of an electronvolt. At electron energies less than 55 eV, the energy distributions of lithium atoms involve one peak with a maximum at about 0.18 eV. For the lithium coverages less than 0.45 and electron energies higher than 55 eV, the second peak with a maximum at 0.25 eV appears in the energy distributions of the lithium atoms. The results obtained can be interpreted in the framework of the Auger-stimulated desorption model, in which the adsorbed lithium ions are neutralized after filling holes inside inner shells of the substrate and lithium atoms.  相似文献   

10.
Experimental studies and theoretical calculations of the photoemission from Cs/n-GaN(0001) and Ba/n-GaN(0001) ultrathin interfaces were carried out. The electronic properties of the interfaces were studied in situ using threshold photoemission spectroscopy under vacuum at a residual pressure of P ~ 5 × 10?11 Torr. A new effect was revealed, namely, photoemission with a high quantum yield under excitation with light in the transparency region of GaN. It was shown that adsorption of Cs or Ba on n-GaN brings about the formation of a quasi-two-dimensional electron channel, i.e., a charge accumulation layer directly near the surface. The dependences of the photoemission spectra and work function on the thickness of Cs and Ba coatings were investigated. It was established that adsorption of Cs and Ba leads to a sharp decrease in the work function by ~1.45 and ~1.95 eV, respectively. The photoemission spectra were calculated, and parameters of the accumulation layer, such as the energy position of the layer below the Fermi level for different Cs and Ba coverages, were determined. It was demonstrated that the energy parameters of the accumulation layer on the n-GaN(0001) surface can be controlled by properly varying the Cs or Ba coverage. The layer thickness was found to reach a maximum for a cesium coverage of ~0.5 monolayer.  相似文献   

11.
In this paper, a H-terminated silicon wafer was bombarded by low energy cesium ions during ToF-SIMS analysis and work function variations of the target were measured for different analysis conditions. This measurement was performed by measuring the shift of the secondary ions energy distributions with a reflectron type analyzer. At first, the silicon’s work function change was found to be −2.3 eV during 500 eV Cs+ bombardment at 45°. This effect is due to the creation of a dipolar layer at the surface of the silicon by the implanted cesium. Then the work function variation was measured at 300 eV for varying cesium surface concentrations. The work function was found to decrease monotonously with the increasing cesium surface concentration, as during cesium adsorption experiments. The results were modeled following three different approaches and the value of the effective polarizability α of cesium was found to be equal to 1.9 × 10−39 C m2/V. Finally, the effect of the bombardment energy on the work function variation was studied for beams with energies ranging from 250 to 2000 eV. The effective polarizability of cesium was found to increase with increasing Cs beam energy.  相似文献   

12.
The interaction of Cs and O2 on MoS2(0001) has been studied both in the alternate adsorption and the codeposition mode by LEED, AES, TDS and WF measurements at 170 and 300 K. Oxygen does not interact with Cs when θCs?0.04 at 300 K or θCs?0.08 at 170 K, where Cs is known to adsorb as strongly ionized, individual adatoms. The interaction at higher θCs, where Cs is known to form clusters on MoS2(0001), leads to clusters of a Cs/O complex characterized by a Cs(563 eV)/O(512 eV) Auger peak ratio of 1.1–1.3. The minimum WF is 2.1 eV at 300 and 170 K upon alternate adsorption, and 1.7 eV at both T upon codeposition. Upon heating, oxygen and Cs desorb independently, as no oxide desorption is observed. The Cs TDS spectrum is shifted to lower T in the presence of oxygen and a new desorption peak appears at ~ 880 K. The differences in the Cs/O interaction between MoS2(0001) and other semiconductors and metals are attributed to the Cs clustering and the inertness of MoS2(0001) to O2 adsorption.  相似文献   

13.
The work-function determination by the Kelvin method is used to study the adsorption of oxygen, cesium and co-adsorption of oxygen and cesium on a (100) tungsten surface, at room temperature. The work-function change of the clean surface with the oxygen exposure is used to estimate the sticking coefficient and the dipole moment of adsorbed oxygen. During cesium deposition on the clean surface, a minimum at 1.58 eV and a plateau at 1.80 eV are obtained. Starting from the minimum obtained with cesium, oxygen adsorption leads to a decrease of the work function down to 1.17 eV, when cesium adsorption on a previously oxygenated surface gives a 1.12 eV minimum and an increase of the plateau up to 2.20 eV. This last variation is shown to be consistent with the observed increase of the dipole moment of cesium adsorbed on a partially oxygenated surface, which accounts also for the lowering of the work function minimum.  相似文献   

14.
The yield and energy distributions of potassium and cesium atoms emitted in electron-stimulated desorption (ESD) from a molybdenum surface, oxidized to different extent and maintained at 300 K, have been measured by the time-of-flight technique with a surface ionization detector. The ESD threshold for potassium and cesium atoms lies around 25 eV, irrespective of molybdenum oxidation state. In the case of molybdenum coated by an oxygen monolayer, secondary thresholds at ∼40 and ∼70 eV have been observed, as well as atomic energy distribution tailing down to very low energies. The most probable kinetic energies of the atoms are a few tenths of one eV. The results are explained within a model involving Auger neutralization of the adsorbed alkali metal ions after the filling of the 2s O, 4s Mo, and 4p Mo core holes. The possibility of ESD of a neutral species as a result of oxide-cation core-level ionization has been demonstrated for the first time. Fiz. Tverd. Tela (St. Petersburg) 39, 758–761 (April 1997)  相似文献   

15.
Neutral atom binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations are compared with empirical values for Na, K, Rb, Cs, An and Cd atoms. The method is precise (within ~ 1 eV) for the highest l for a given n, but there are errors of several eV for s levels other than 1s.  相似文献   

16.
The adsorption of N2, NH3, NO, and N2O onto clean polycrystalline dysprosium at 300 and 115 K and the changes undergone by the adsorbed species upon heating from 115 K have been investigated using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). At 115 K, N2 adsorbs dissociatively, vielding two peaks in the N 1s region at 396.2 and 398.2 eV corresponding respectively to a nitride and to chemisorbed nitrogen N(a). No peaks corresponding to molecularly adsorbed N2 (BE 400.2 eV [10]) were observed. Upon heating the sample the N(a) is converted into the nitride species, as evidenced by a decrease in the 398.2 eV peak and a corresponding increase in the 396.2 eV peak. At a warm-up temperature of 300 K, the N(a) species accounts for only ~10% of the total nitrogen on the surface. Ammonia adsorbed at 115 K shows three distinct peaks, at 401.7, 399.3 and 396.2 eV, corresponding to molecular, partly dissociated, and completely dissociated (nitride) ammonia. Upon heating multilayer ammonia to 175 K, it desorbs to leave predominantly the peak corresponding to the partly dissociated species. Upon further heating the molecular and partly dissociated ammonia is converted into the nitride species. At 400 K only nitride-type nitrogen remains on the surface. The adsorption of NO and N2O at 115 K is predominantly dissociative. NO has N 1s peaks at 403.1 and 396.3 eV corresponding possibly to molecularly adsorbed NO, and to nitride species. After N2O adsorption there is very little nitrogen on the surface. Adsorption of N2 and NO at 300 K yields only the peak at 396.2 eV, whereas NH3 yields, in addition to this peak, a small intensity (~20%) of the peak at 398.2 eV (partly dissociated ammonia).  相似文献   

17.
The electron-stimulated desorption of Li+ ions from lithium layers adsorbed on the tantalum surface coated with a silicon film has been investigated. The measurements are performed using a static magnetic mass spectrometer equipped with an electric field-retarding energy analyzer. The threshold of the electron-stimulated desorption of lithium ions is close to the ionization energy of the Li 1s level. The secondary thresholds are observed at energies of about 130 and 150 eV. The threshold at an energy of 130 eV is approximately 30 eV higher than the ionization energy of the Si 2p level and can be associated with the double ionization. The threshold at 150 eV can be caused by the ionization of the Si 2s level. It is demonstrated that the yield of Li+ ions does not correlate with the silicon amount in near-the-surface region of the tantalum ribbon and drastically increases at high annealing temperatures. The dependence of the current of Li+ desorption on the lithium concentration upon annealing of the tantalum ribbon at T>1800 K exhibits two maxima. The ions desorbed by electrons with energies higher than 130 and 150 eV make the largest contribution to the current of lithium ions after the annealing. The yield of lithium ions upon ionization of the Li 1s level at an energy of 55 eV is considerably lesser, but it is observed at higher concentrations of deposited lithium. The results obtained can be interpreted in the framework of the Auger-stimulated desorption model with allowance made for relaxation of the local surface field.  相似文献   

18.
The behaviour of lead and iron adsorbed on the W(100) surface has been studied by probe hole field emission microscopy, field desorption, and by measurement of the total energy distribution (TED) of field-emitted electrons. Lead adsorbed at 300 K which reduces the work function of W(100) can be completely removed at 78 K by field desorption below 3.2 V Å?1 and the resulting surface has both the work function and TED, which are characteristic of the clean plane. Condensation at 800 K followed by field desorption, results in a plane surface of work function 4.17 eV and an altered TED. This effect is attributed to the microfacetting, which is observed by LEED. The Swanson peak in the W(100) TED which is removed by submonolayer amounts of lead re-emerges at monolayer coverage when lead adopts the (1 × 1) structure. Such behaviour is consistent with the model proposed by Kar and Soven. A spectral peak observed when lead is adsorbed on the reconstructed W(100) surface is thought to derive from the atomic 1D state. Adsorption of iron on a W(100) surface reduces φ considerably due to dipole formation and efficiently quenches the Swanson peak. Higher coverages introduce other peaks in the TED enhancement curve, and by adopting an energy scale based on the work of Hagstrum, an attempt is made to interpret the observed peaks in terms of the known energy structure of the free iron atom. One of the three spectral peaks is assigned to the 4s2 ground state of the iron atom, and the remaining two peaks are tentatively attributed to atomic p-states. It is concluded that while the excited state structure of the iron atom is too complex to permit complete interpretation of the spectra, this approach offers the hope that, for simpler atoms, such features may be interpreted in this way.  相似文献   

19.
Ab initio/effective core potential cluster studies are reported for the interaction of H atoms with bcc iron. The calculations use a one-electron ECP based on the 4s13d7 state of the Fe atom. Two-fold and four-fold sites on the (100) surface as well as octahedral, tetrahedral, and trigonal interior sites were studied. Four-fold surface sites are found to be bound by ~1.5 eV with the H atom ~ 0.5a0 above the surface. Penetration of the surface at a four-fold site involves movement toward a second layer atom and is expected to be unfavorable. Two-fold surface sites have small binding energies ~ 0.25 eV. Penetration of the surface at this site involves movement toward a tetrahedral interior site and is downhill in energy. Tetrahedral interior sites are found to be bound by ~1.3 eV and are a minimum on the potential energy surface. Octahedral sites are a maximum on the potential energy surface and are estimated to be ~ 0.2 eV higher (including lattice relaxation effects). Trigonal sites are found to be a saddle point connecting adjacent tetrahedral sites and this pathway leads to an estimated barrier to diffusion of ~ 0.1 eV (including lattice relaxation effects). The volume expansion for a H atom in a tetrahedral site is calculated to be 21%.  相似文献   

20.
In this study we have investigated how the probability of ionization of sputtered Si atoms to form negative ions depends on the energy of the atoms. We have determined the ionization probability from experimental SIMS energy distributions using a special experimental technique, which included de-convolution of the energy distribution with an instrumental transmission function, found by separate measurements.We found that the ionization probability increases as a power law ∼E0.677 for particles sputtered with energies of 0-10 eV, then becomes a constant value (within the limits of experimental error) for particles sputtered with energies of 30-100 eV. The energy distributions of Si ions, measured under argon and cesium ion sputtering, confirmed this radical difference between the yields from low and high-energy ions.To explain these results we have considered ionization mechanisms that are different for the low energy atoms (<10 eV) and for the atoms emitted with higher energy (>30 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号