首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文使用动态有限元技术,对于两种不同几何尺寸,两种不同材料的三点弯曲试样在三类七种不同冲击载荷作用下的动态响应进行了分析,求得了动态应力强度因子随时间的变化规律。并与准静态应力强度因子进行了比较。计算结果表明:将冲击载荷历史代入静态公式确定动态应力强度因子的做法是不正确的,要求得动态应力强度因子,必须对试样进行完全的动态分析。当材料的E/ρ值相同时,动态应力强度因子的响应曲线完全相同。而动态应力强度因子分别与加载点的位移及裂纹的张开位移之间存在着与准静态情况下各自相同的线性关系。这与资料[5][6]中的结论完全相同。  相似文献   

2.
三点弯曲试样动态应力强度因子计算研究   总被引:2,自引:0,他引:2  
利用Hopkinson压杆对三点弯曲试样进行冲击加载,采集了垂直裂纹面距裂尖2mm和与裂纹面成60°距裂尖5mm处的应变信号。根据裂尖附近测试的应变信号计算试样的动态应力强度因子,并与有限元计算结果进行比较,结果表明由于裂尖有一段疲劳裂纹区,通过裂尖附近应变信号来计算动态应力强度因子时,如果裂尖位置确定不准及粘贴应变片位置不够准确对计算结果将带来很大影响。因此利用应变片法计算动态应力强度因子时,为了获得更准确的计算结果,在实验后应对试件裂纹面进行分析测量,重新确定裂尖位置,必要时需对应变片至裂尖距离进行修正后再计算动态应力强度因子值。  相似文献   

3.
三点弯曲试样动态冲击特性的有限元分析   总被引:6,自引:0,他引:6  
本文使用动态有限元技术,对两种不同几何尺寸,两种不同材料的三点弯曲试样在三类七种不同冲击载荷作用下的动态响应进行了分析,求得了动态应力强度因子随时间的变化规律,并与准静态应力强度因子进行了比较,计算结果表明:半冲击载荷历史代入静态公式确定动态应力强度因子的做法是不正确的,要求得动态应力强度因子,必须对试样进行完全的动态分析,当材料的E/ρ值相同时,动态应力强度因子的响应曲线完全相同,而动态应力强度  相似文献   

4.
主要研究冲击载荷作用下的三维弹塑性弯曲裂纹尖端的张开位移问题.综合考虑了冲击作用应力,三维塑性区域边界上正应力与剪应力,利用二阶摄动方法计算了三维弹塑性弯曲裂纹尖端的张开位移.用数值解法计算出三维弹塑性弯曲裂纹尖端张开位移,作图分析了三维弹塑性弯曲裂纹尖端张开位移与三维裂纹体几何尺寸之间的变化关系.三维弹塑性弯曲裂纹尖端张开位移随着三维裂纹体厚度的增大而减小,随着三维裂纹体厚度的均匀增大,三维弹塑性弯曲裂纹尖端张开位移尺寸不断减小,减小的幅度越来越小,最终趋于平面应变状态下的弹塑性弯曲裂纹尖端张开位移尺寸.当三维裂纹体几何尺寸相同时,三维弯曲裂纹尖端动态张开位移随外部冲击载荷的不断增大而逐渐增大,三维弯曲裂纹尖端动态张开位移随动荷系数的增大而迅速增大,建立了一个计算三维弹塑性弯曲裂纹尖端动态张开位移的崭新理论模型.  相似文献   

5.
考虑了I型裂纹尖端损伤区域内三种不同的约束应力分布形式,即右三角分布形式(情况A)、均匀分布形式(情况B)、左三角分布形式(情况C),并采用复变函数方法求得了应力强度因子与裂纹张开位移的解析解;在此基础上,通过数值计算得到了应力强度因子和裂纹张开位移随约束应力区长度、约束应力大小以及分布形式的变化规律。研究结果表明:随裂尖材料损伤程度的增加,裂尖损伤区内约束应力减小,应力强度因子和裂纹张开位移增大;约束应力的分布形式对应力强度因子和裂纹张开位移有显著影响;相对于其他区域,约束应力对裂纹尖端区域裂纹张开位移的影响较大。然而,对于裂尖损伤区域的形成与作用荷载、材料性质、构件几何尺寸之间的关系,还需要进行更为深入的研究。  相似文献   

6.
陈宜周  林筱云 《力学季刊》2005,26(1):116-120
本文利用能量释放率法计算功能梯度材料开裂三点弯曲试件的裂纹端应力强度因子。在给定力作用下算出裂纹长度为“a”和“a △a”时的二组解,解中包括集中力作用处的位移。从二组解中的相应位移改变值便可以决定出能量释放率。再从能量释放率可以算出裂纹端应力强度因子。本文用有限元方法计算开裂三点弯曲试件的位移。正因为利用了能量释放率法,即利用一种间接法来求裂纹端应力强度因子,从而可用常规有限元来解决问题。  相似文献   

7.
40Cr材料动态起裂韧性KId()的实验测试   总被引:4,自引:0,他引:4  
描述了利用Hopkinson压杆技术加载三点弯曲试样测试40Cr,材料动态起裂韧性KId()的试验方法。试样上的动态载荷历程由Hopkinson杆直接测得,并分别代入动态有限元程序及近似公式求得动态应力强度因子历史;由贴在试样裂尖附近的应变片确定起裂时间,最终确定起裂时的动态应力强度因子值,即动态起裂韧性KId()。试验结果表明:利用Hopkinson压杆技术加载三点弯曲试样测试材料动态起裂韧性的方法是可行的,起裂时,动态有限元的位移法、应力法及近似公式法求得的动态应力强度因子值比较吻合;在本文的载荷速率下,40Cr材料动态起裂韧性KId()与准静态裂韧性KId()相比,降低了约28%。  相似文献   

8.
三点弯曲试样应力强度的动态响应   总被引:1,自引:0,他引:1  
采用振动理论分析了三点弯曲试样的动态响应,得到了一个计及冲击速度影响的动态应力强度因子计算公式。当不考虑冲击速度影响时,本文给出的计算模型可退化成经典的K.Kishimoto模型。数值计算的结果表明,无论是在阶跃载荷作用下,还是在周期载荷作用下,冲击速度对三点弯曲试样应力强度因子的动态响应都有明显的影响。  相似文献   

9.
应力强度因子是一个非常重要的参数,可以用来估算裂纹和切口的断裂.这篇论文提供了一种基于包含应力集中区域一定体积上的平均应变能密度,来确定应力强度因子的数值方法.对于I型或是II型裂纹的单一加载方式,应力强度因子都可以直接从一定体积上的平均应变能密度的表达式求得其解,但是对于I-II复合型裂纹,情况相对复杂.因此,作者们提出了利用围绕切口尖端一定体积上几组不同关于裂纹切口平分线对称区域上的平均应变能密度,来拟合复合加载下I型和II型应力强度因子的数值方法.为了验证,计算了I-II复合型裂纹的半圆形三点弯曲试样应力强度因子,并与文献中给出的应力强度因子进行了比较.结果表明,提出的数值方法可靠,为平均应变能密度准则的工程应用提供了一种新的思路.  相似文献   

10.
高加载率下Ⅱ型裂纹试样的动态应力强度因子及断裂行为   总被引:3,自引:1,他引:3  
采用Hopkinson单压杆技术对单边平行双裂缝试样进行高速剪切加载,用实测的试样加载面上的载荷p(t)结合有限元计算确定其动态应力强度因子。同时还发展了一种用实测的裂尖动态应变,通过在准静态下标定的裂尖应变与应力强度因子间的关系来确定动态应力强度因子的近似方法。实验结果表明,对于稳定裂纹在无边界反射应力波干扰的情况下,两种方法获得的动态应力强度因子吻合得相当好。对40Cr钢和Ti6Al4V钛合金两种材料的动态Ⅱ型断裂实验结果显示出两种完全不同的剪切破坏模式和机理。  相似文献   

11.
含偏置裂纹三点弯曲梁的动态断裂行为研究   总被引:15,自引:0,他引:15  
姚学锋  熊春阳  方竞 《力学学报》1996,28(6):661-669
采用动态焦散线方法,对含偏置裂纹三点弯曲梁承受横向冲击的弯曲断裂行为进行了一系列动态断裂力学实验研究,分析了无量纲量a/l的改变(a——初始裂纹偏离梁中心线的距离;l——梁长度的一半)对于裂纹动态扩展行为(裂纹起始状态、裂纹尖端的复合应力强度因子、裂纹扩展速度、裂纹扩展轨迹)的影响,并借助动态光弹性应力分析,对应力波与扩展裂纹的相互作用以及应力波传播规律进行探讨.给出了裂纹尖端复合应力强度因子、裂纹扩展速度的变化、裂纹曲裂轨迹以及方向与梁中应力波传播的相互关系  相似文献   

12.
为了探究动静组合应力场作用下邻近巷道背爆侧裂纹缺陷的扩展规律,采用动静加载透射式动态焦散线方法进行了模拟实验,并结合裂纹尖端的动态应力强度因子和能量释放率进行了分析。实验结果表明:在动静荷载作用下,邻近巷道背爆侧裂纹缺陷处也成为巷道主要扰动区,且爆炸荷载对背爆侧预制裂纹的起裂起主导作用;p=0.2 MPa时的相同动静组合应力场中,背爆侧预制裂纹的扩展位移差异与裂纹的倾角有关,当θ=75°时,爆炸应力波无法驱动裂纹起裂;在相同爆炸荷载作用下,θ=30°时,较小竖向荷载对裂纹的扩展具有抑制作用,且抑制作用随所施加的竖向荷载增加而增大,当p=0.4 MPa时,裂纹无法起裂;裂纹最终扩展位移,与裂纹尖端动态应力强度因子在极大值上下振荡变化的持续时间,或在裂纹扩展阶段能量释放率积累量,呈正相关。  相似文献   

13.
为研究拉伸荷载下分支裂隙对破坏模式的影响,保持主裂隙参数不变,改变分支裂隙倾角和长度,利用扩展有限元方法模拟了弯折裂隙的动态扩展,总结了分支裂隙参数变化对破坏模式的影响。利用ABAQUS中的轮廓积分计算了分支裂隙尖端应力强度因子,并根据最大周向应力准则计算起裂角。结果表明:拉伸荷载下分支裂隙出现三种破坏模式;分支裂隙倾角和长度均对破坏模式有一定的影响。I型应力强度因子与分支裂隙倾角关系曲线呈斜"S"型,相应II型应力强度因子曲线呈上凸型;由于分支裂隙存在非尖端破坏,利用裂隙尖端应力强度因子判断开裂应结合相应的破坏模式。  相似文献   

14.
采用数字激光动态焦散线测试系统,研究爆炸应力波作用下动裂纹与预制静裂纹(水平夹角为90°、150°)相互作用机理,以及裂纹扩展的动态行为。结果表明:(1)在动、静裂纹贯通之前,静裂纹两端便出现焦散斑,动、静裂纹贯通以后,静裂纹沿爆炸应力波传播方向扩展,并且扩展速度小于动裂纹扩展速度,也小于无静裂纹时动裂纹扩展速度; (2)静裂纹存在时,动裂纹扩展的总体长度减小。动裂纹起裂时间缩短,扩展速度基本不受静裂纹的影响,裂纹应力强度因子值大于静裂纹两端值; (3)随着静裂纹水平夹角的增大,动、静裂纹贯通时动裂纹沿水平方向偏转距离增大,静裂纹B端反向扩展与动裂纹相互“咬合”,C端裂纹扩展位移和速度增大。  相似文献   

15.
黏弹性体界面裂纹的冲击响应   总被引:3,自引:0,他引:3  
研究两半无限大黏弹性体界面Griffith裂纹在反平面剪切突出载荷下,裂纹尖端动应力强度因子的时间响应,首先,运用积分变换方法将黏弹性混合黑社会问题化成变换域上的对偶积分方程,通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程,运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子,再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行分析。  相似文献   

16.
爆炸载荷下板条边界斜裂纹的动态扩展行为   总被引:1,自引:0,他引:1  
为了研究爆炸应力波作用下板条边界斜裂纹的动态扩展行为,首先分析了爆炸应力波在含边界斜裂纹板条中的传播,其次采用动态焦散线实验方法,进行了爆炸载荷下板条边界斜裂纹扩展规律的实验研究.研究结果表明,爆炸应力波作用下,板条试件边界斜裂纹的扩展过程中,裂纹扩展速度、扩展加速度和裂尖动态应力强度因子随时间波动变化,扩展速度最大值...  相似文献   

17.
给出一个以任意速率扩展的反平面裂纹与路径无关的J积分,证明J积分扩展裂纹尖端的张开位移(动态COD)之间有的简单的关系,J积分与能量释放率,动应力强度因子之间也有简单关系,利用这些关系,给出了动态COD与动应力强度因子之间的关系式。  相似文献   

18.
冲击载荷下含表面裂纹圆柱壳体的动态断裂   总被引:1,自引:0,他引:1  
动态载荷下含表面裂纹的有限尺寸构件的断裂问题在工程实践中有着重要意义,但由于此类问题非常复杂,目前还不能求得解析解。本文针对含轴向半椭圆盘状表面裂纹的圆柱壳体,应用有限元法研究了动态载荷下其断裂问题,计算了动态应力强度因子与静态应力强度因子的比值KdIyn(t)/KsIta。从计算结果可以得出,比值KdIyn(t)/KsIta与结构和裂纹的尺寸有关,而与冲击载荷的大小无关。本文所得结果在一定程度上揭示了圆柱壳体表面、裂纹面、物质惯性和弹性波的相互作用及其对动态断裂的影响。  相似文献   

19.
The dynamic behavior of a limited-permeable rectangular crack in a transversely isotropic piezoelectric material is impinged by to a P-wave. The generalized Almansi theorem and the Schmidt method are used to determine the stress intensity factor and energy density factor as the primary fracture criterion of failure. The mixed boundary value problem entails the evaluation of the appropriate crack edge stress singularities that are characteristics of the fundamental functions. The stress and electric displacement intensity factors are also used to find the energy release rate that can be computed numerically and compared with the results corresponding to those of the stress intensity factor, and energy density factor. Graphical presentation shows that the energy release rate is always negative for the boundary conditions considered while the energy density factors always remain positive. Under certain conditions, the stress and electric displacement intensity factors can be negative and subject to physical limitations. Piezoelectric material boundary value problem solutions should therefore be qualified by the application of failure criteria by fracture of otherwise, particularly when the mechanical and electrical energy can release by creating free surface at the macroscopic and microscopic scales. Negative energy release rate found for the piezoelectric medium in this work can be a case in point.Positive definiteness of the energy density factor can be applied to mutliscale fracture. This is not true for the stress intensity factor nor the energy release rate. Hence, crack initiation behavior for the permittivity of a rectangular crack due to the wave propagation effects may be studied. In particular, the initiation of micro-cracks may be identified with certain critical stress wave frequency band. Negative stress intensity factor may not enhance macrocracking but it does not exclude microcrack initiation.  相似文献   

20.
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored. This work was supported by the National Natural Science Foundation of China (No.19772064) and by the project of CAS KJ 951-1-20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号