首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
图G的一个L(2,1)-标号是对G顶点集合的一个非负整数分配,使得其中相邻的点取得的整数差值至少为2并且距离为2的点取得不同的整数.L(2,1)-标号数就是所有这样的标号分配中最小的标号跨度值.Griggs和Yeh的[Labelling graphs with a condition at distance 2,SIAM J.Discrete Math.,1992,5:586-595]已经证明了,一棵树的L(2,1)-标号数不是△就是△+1.对于最大度为3的树的L(2,1)-标号数,本文给出了一个完全的刻画.  相似文献   

2.
《Discrete Mathematics》2002,231(1-3):311-318
An L(2,1)-labeling of graph G is an integer labeling of the vertices in V(G) such that adjacent vertices receive labels which differ by at least two, and vertices which are distance two apart receive labels which differ by at least one. The λ-number of G is the minimum span taken over all L(2,1)-labelings of G. In this paper, we consider the λ-numbers of generalized Petersen graphs. By introducing the notion of a matched sum of graphs, we show that the λ-number of every generalized Petersen graph is bounded from above by 9. We then show that this bound can be improved to 8 for all generalized Petersen graphs with vertex order >12, and, with the exception of the Petersen graph itself, improved to 7 otherwise.  相似文献   

3.
On island sequences of labelings with a condition at distance two   总被引:1,自引:0,他引:1  
An L(2,1)-labeling of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1, and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between the pair of vertices x,y. The lambda number of G, denoted λ(G), is the minimum range of labels used over all L(2,1)-labelings of G. An L(2,1)-labeling of G which achieves the range λ(G) is referred to as a λ-labeling. A hole of an L(2,1)-labeling is an unused integer within the range of integers used. The hole index of G, denoted ρ(G), is the minimum number of holes taken over all its λ-labelings. An island of a given λ-labeling of G with ρ(G) holes is a maximal set of consecutive integers used by the labeling. Georges and Mauro [J.P. Georges, D.W. Mauro, On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] inquired about the existence of a connected graph G with ρ(G)≥1 possessing two λ-labelings with different ordered sequences of island cardinalities. This paper provides an infinite family of such graphs together with their lambda numbers and hole indices. Key to our discussion is the determination of the path covering number of certain 2-sparse graphs, that is, graphs containing no pair of adjacent vertices of degree greater than 2.  相似文献   

4.
An L(2,1)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G so that adjacent vertices get labels at least distance two apart and vertices at distance two get distinct labels. A hole is an unused integer within the range of integers used by the labeling. The lambda number of a graph G, denoted λ(G), is the minimum span taken over all L(2,1)-labelings of G. The hole index of a graph G, denoted ρ(G), is the minimum number of holes taken over all L(2,1)-labelings with span exactly λ(G). Georges and Mauro [On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] conjectured that if G is an r-regular graph and ρ(G)?1, then ρ(G) must divide r. We show that this conjecture does not hold by providing an infinite number of r-regular graphs G such that ρ(G) and r are relatively prime integers.  相似文献   

5.
An L(h, 1, 1)-labeling of a graph is an assignment of labels from the set of integers {0, . . . , λ} to the nodes of the graph such that adjacent nodes are assigned integers of at least distance h ≥ 1 apart and all nodes of distance three or less must be assigned different labels. The aim of the L(h, 1, 1)-labeling problem is to minimize λ, denoted by λ h, 1, 1 and called span of the L(h, 1, 1)-labeling. As outerplanar graphs have bounded treewidth, the L(1, 1, 1)-labeling problem on outerplanar graphs can be exactly solved in O(n 3), but the multiplicative factor depends on the maximum degree Δ and is too big to be of practical use. In this paper we give a linear time approximation algorithm for computing the more general L(h, 1, 1)-labeling for outerplanar graphs that is within additive constants of the optimum values. This research is partially supported by the European Research Project Algorithmic Principles for Building Efficient Overlay Computers (AEOLUS) and was done during the visit of Richard B. Tan at the Department of Computer Science, University of Rome “Sapienza”, supported by a visiting fellowship from the University of Rome “Sapienza”.  相似文献   

6.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

7.
With the help of the Graffiti system, Fajtlowicz conjectured around 1992 that the average distance between two vertices of a connected graph G is at most half the maximum order of an induced bipartite subgraph of G, denoted α2(G). We prove a strengthening of this conjecture by showing that the average distance between two vertices of a connected graph G is at most half the maximum order of an induced forest, denoted F(G). Moreover, we characterize the graphs maximizing the average distance among all graphs G having a fixed number of vertices and a fixed value of F(G) or α2(G). Finally, we conjecture that the average distance between two vertices of a connected graph is at most half the maximum order of an induced linear forest (where a linear forest is a union of paths). © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 31–54, 2009  相似文献   

8.
The concept of the line graph can be generalized as follows. The k-line graph Lk(G) of a graph G is defined as a graph whose vertices are the complete subgraphs on k vertices in G. Two distinct such complete subgraphs are adjacent in Lk(G) if and only if they have in G k ? 1 vertices in common. The concept of the total graph can be generalized similarly. Then the Perfect Graph Conjecture will be proved for 3-line graphs and 3-total graphs. Moreover, perfect 3-line graphs are not contained in any of the known classes of perfect graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Two variations of set intersection representation are investigated and upper and lower bounds on the minimum number of labels with which a graph may be represented are found that hold for almost all graphs. Specifically, if θk(G) is defined to be the minimum number of labels with which G may be represented using the rule that two vertices are adjacent if and only if they share at least k labels, there exist positive constants ck and c′k such that almost every graph G on n vertices satisfies Changing the representation only slightly by defining θ;odd (G) to be the minimum number of labels with which G can be represented using the rule that two vertices are adjacent if and only if they share an odd number of labels results in quite different behavior. Namely, almost every graph G satisfies Furthermore, the upper bound on θodd(G) holds for every graph. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

11.
In this paper, we study the edge clique cover number of squares of graphs. More specifically, we study the inequality θ(G2)θ(G) where θ(G) is the edge clique cover number of a graph G. We show that any graph G with at most θ(G) vertices satisfies the inequality. Among the graphs with more than θ(G) vertices, we find some graphs violating the inequality and show that dually chordal graphs and power-chordal graphs satisfy the inequality. Especially, we give an exact formula computing θ(T2) for a tree T.  相似文献   

12.
Matching graphs     
The matching graph M(G) of a graph G is that graph whose vertices are the maximum matchings in G and where two vertices M1 and M2 of M(G) are adjacent if and only if |M1M2| = 1. When M(G) is connected, this graph models a metric space whose metric is defined on the set of maximum matchings in G. Which graphs are matching graphs of some graph is not known in general. We determine several forbidden induced subgraphs of matching graphs and add even cycles to the list of known matching graphs. In another direction, we study the behavior of sequences of iterated matching graphs. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 73–86, 1998  相似文献   

13.
The optimal channel assignment is an important optimization problem with applications in optical networks. This problem was formulated to the L(p, 1)-labeling of graphs by Griggs and Yeh (SIAM J Discrete Math 5:586–595, 1992). A k-L(p, 1)-labeling of a graph G is a function \(f:V(G)\rightarrow \{0,1,2,\ldots ,k\}\) such that \(|f(u)-f(v)|\ge p\) if \(d(u,v)=1\) and \(|f(u)-f(v)|\ge 1\) if \(d(u,v)=2\), where d(uv) is the distance between the two vertices u and v in the graph. Denote \(\lambda _{p,1}^l(G)= \min \{k \mid G\) has a list k-L(p, 1)-labeling\(\}\). In this paper we show upper bounds \(\lambda _{1,1}^l(G)\le \Delta +9\) and \(\lambda _{2,1}^l(G)\le \max \{\Delta +15,29\}\) for planar graphs G without 4- and 6-cycles, where \(\Delta \) is the maximum vertex degree of G. Our proofs are constructive, which can be turned to a labeling (channel assignment) method to reach the upper bounds.  相似文献   

14.
A labeling of graph G with a condition at distance two is an integer labeling of V(G) such that adjacent vertices have labels that differ by at least two, and vertices distance two apart have labels that differ by at least one. The lambda-number of G, λ(G), is the minimum span over all labelings of G with a condition at distance two. Let G(n, k) denote the set of all graphs with order n and lambda-number k. In this paper, we examine the sizes of graphs in G(n, k). We modify Chvàtal's result on non-hamiltonian graphs to obtain a formula for the minimum size of a graph in G(n, k), and we use an algorithmic approach to obtain a formula for the maximum size. Finally, we show that for any integer j between the maximum and minimum sizes there exists a graph with size j in G(n, k). © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function such that |Λ(u)−Λ(v)|2, when u,v are neighbors in G, and |Λ(u)−Λ(v)|1 when the distance of u,v in G is two. The discrete number of frequencies used is called order and the range of frequencies used, span. The optimization versions of the Radiocoloring Problem (RCP) are to minimize the span (min span RCP) or the order (min order RCP).In this paper, we deal with an interesting, yet not examined until now, variation of the radiocoloring problem: that of satisfying frequency assignment requests which exhibit some periodic behavior. In this case, the interference graph (modelling interference between transmitters) is some (infinite) periodic graph. Infinite periodic graphs usually model finite networks that accept periodic (in time, e.g. daily) requests for frequency assignment. Alternatively, they can model very large networks produced by the repetition of a small graph.A periodic graph G is defined by an infinite two-way sequence of repetitions of the same finite graph Gi(Vi,Ei). The edge set of G is derived by connecting the vertices of each iteration Gi to some of the vertices of the next iteration Gi+1, the same for all Gi. We focus on planar periodic graphs, because in many cases real networks are planar and also because of their independent mathematical interest.We give two basic results:
• We prove that the min span RCP is PSPACE-complete for periodic planar graphs.
• We provide an O(n(Δ(Gi)+σ)) time algorithm (where|Vi|=n, Δ(Gi) is the maximum degree of the graph Gi and σ is the number of edges connecting each Gi to Gi+1), which obtains a radiocoloring of a periodic planar graph G that approximates the minimum span within a ratio which tends to as Δ(Gi)+σ tends to infinity.
We remark that, any approximation algorithm for the min span RCP of a finite planar graph G, that achieves a span of at most αΔ(G)+constant, for any α and where Δ(G) is the maximum degree of G, can be used as a subroutine in our algorithm to produce an approximation for min span RCP of asymptotic ratio α for periodic planar graphs.
Keywords: Approximation algorithms; Computational complexity; Radio networks; Frequency assignment; Coloring; Periodic graphs  相似文献   

16.
A graph G is called distance-regularized if each vertex of G admits an intersection array. It is known that every distance-regularized graph is either distance-regular (DR) or distance-biregular (DBR). Note that DBR means that the graph is bipartite and the vertices in the same color class have the same intersection array. A (k, g)-graph is a k-regular graph with girth g and with the minimum possible number of vertices consistent with these properties. Biggs proved that, if the line graph L(G) is distance-transitive, then G is either K1,n or a (k, g)-graph. This result is generalized to DR graphs by showing that the following are equivalent: (1) L(G) is DR and GK1,n for n ≥ 2, (2) G and L(G) are both DR, (3) subdivision graph S(G) is DBR, and (4) G is a (k, g)-graph. This result is used to show that a graph S is a DBR graph with 2-valent vertices iff S = K2,′ or S is the subdivision graph of a (k, g)-graph. Let G(2) be the graph with vertex set that of G and two vertices adjacent if at distance two in G. It is shown that for a DBR graph G, G(2) is two DR graphs. It is proved that a DR graph H without triangles can be obtained as a component of G(2) if and only if it is a (k, g)-graph with g ≥ 4.  相似文献   

17.
An independent set S of a graph G is said to be essential if S has a pair of vertices that are distance two apart in G. For SV(G) with S≠, let Δ(S)=max{dG(x)|xS}. We prove the following theorem. Let k2 and let G be a k-connected graph. Suppose that Δ(S)d for every essential independent set S of order k. Then G has a cycle of length at least min{|G|,2d}. This generalizes a result of Fan.  相似文献   

18.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

19.
The distinguishing number D(G) of a graph is the least integer d such that there is a d‐labeling of the vertices of G that is not preserved by any nontrivial automorphism of G. We show that the distinguishing number of the square and higher powers of a connected graph GK2, K3 with respect to the Cartesian product is 2. This result strengthens results of Albertson [Electron J Combin, 12 ( 1 ), #N17] on powers of prime graphs, and results of Klav?ar and Zhu [Eu J Combin, to appear]. More generally, we also prove that d(GH) = 2 if G and H are relatively prime and |H| ≤ |G| < 2|H| ? |H|. Under additional conditions similar results hold for powers of graphs with respect to the strong and the direct product. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 250–260, 2006  相似文献   

20.
Let G be a simple graph. The point arboricity ρ(G) of G is defined as the minimum number of subsets in a partition of the point set of G so that each subset induces an acyclic subgraph. The list point arboricity ρ l (G) is the minimum k so that there is an acyclic L-coloring for any list assignment L of G which |L(v)| ≥ k. So ρ(G) ≤ ρ l (G) for any graph G. Xue and Wu proved that the list point arboricity of bipartite graphs can be arbitrarily large. As an analogue to the well-known theorem of Ohba for list chromatic number, we obtain ρ l (G + K n ) = ρ(G + K n ) for any fixed graph G when n is sufficiently large. As a consequence, if ρ(G) is close enough to half of the number of vertices in G, then ρ l (G) = ρ(G). Particularly, we determine that , where K 2(n) is the complete n-partite graph with each partite set containing exactly two vertices. We also conjecture that for a graph G with n vertices, if then ρ l (G) = ρ(G). Research supported by NSFC (No.10601044) and XJEDU2006S05.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号