首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

2.
The reactivity of (3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphine (L) hybrid ligand against Cu(I), Ag(I) and Au(I) has been assayed and compounds [Cu(L)2](PF6) (1), [Ag(L)]2(PF6)2·2C2H4Cl2·2C4H10O (2) and [AuCl(L)]2 (3) have been isolated and fully characterised. A fully characterisation by analytical and spectroscopic methods of 1-3 are presented and X-ray crystal structures of 1 and 2 are also reported. The similar data obtained between 2 and 3 permits to do a serious purpose of the structure of 3 in solid and solution.  相似文献   

3.
The copper(II) complexes CuLCl2 (1) and CuLBr2 (2), with the chelating pyrazolylpyrimidine ligand 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-methyl-6-phenylpyrimidine (L), have been synthesized. A single crystal X-ray diffraction study revealed that 1 and 2 have molecular mononuclear structures. The molecules of 1 and 2 form chains in the crystal structures of these compounds due to the formation of π-π-stacking interactions between the pyrimidine and the phenyl rings. The complexes, in combination with the co-catalyst methylaluminoxane (MAO), reveal catalytic activity in ethylene polymerization, while the free ligand L is inactive.  相似文献   

4.
Reaction of quinolin-8-amine with 1H-pyrrole-2-carbaldehyde or 5-tert-butyl-1H-pyrrole-2-carbaldehyde catalyzed by HCO2H forms N-((1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL, 3a) or N-((5-tert-butyl-1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL′, 3b). Treatment of 3a and 3b respectively with AlMe3 or AlEt3 in toluene affords corresponding aluminum complexes LAlMe2 (4a), L′AlMe2 (4b) and LAlEt2 (4c). Reaction of 3a and 3b with an equivalent of ZnEt2 in toluene generates L2Zn and L′2Zn, respectively. A related compound N-((1H-pyrrol-2-yl)methylene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine (≡ HL″, 7) was prepared by reaction of 2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine with 1H-pyrrole-2-carbaldehyde in the presence of HCO2H. Reaction of 7 with AlMe3 gives L″2AlMe (8), and with ZnEt2 yields L″2Zn (9). All new compounds were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 4b, 5b and 8 were additionally characterized by single crystal X-ray diffraction analyses. Complexes 4a-4c, and 8 were proved to be active catalysts for the ring-opening polymerization (ROP) of ?-caprolactone (?-CL) in the presence of BnOH. The kinetic study of the polymerization reactions catalyzed by 4a and 8 was performed.  相似文献   

5.
The tripodal N,N,O ligands 3,3-bis(3,5-dimethylpyrazol-1-yl)propionic acid (Hbdmpzp) (1) and 3,3-bis(pyrazol-1-yl)propionic acid (Hbpzp) (2) form the “missing link” between the well-known bis(pyrazol-1-yl)acetic acids and related ligands with a longer “carboxylate arm”. To illustrate the reactivity of this ligand, manganese and rhenium complexes bearing the ligand bdmpzp are reported. The complexes are compared to related compounds bearing other tripod ligands such as bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza) and 3,3-bis(1-methylimidazol-2-yl)propionate (bmip). Spectroscopic and structural data are used as a basis for comparison, as well as DFT calculations. Both ligands 1 and 2 and the complexes fac-[Mn(bdmpzp)(CO)3] (3) and fac-[Re(bdmpzp)(CO)3] (4) were characterised by X-ray crystallography.  相似文献   

6.
The procedures for the synthesis of the Cu(II) complexes with bis(pyrazole-1-yl)methane (L1), bis(3,5-dimethyl-4-bromopyrazole-1-yl)methane (L2), and bis(3,5-dimethyl-4-iodopyrazole-1-yl)methane (L3) of the composition Cu2(L1)2Br4 (I), Cu2(L2)2Cl4 (II), Cu(L3)(NO3)2 (III), and Cu(L3)(H2O)(NO3)2 · 2H2O (IV) were developed. The organic ligands in the above complexes are coordinated to Cu(II) in a bidentate cyclic type through the N(2), N(2′) atoms of the pyrazole rings. The molecular and crystal structures of L2, L3, II, III, and IV were determined by X-ray diffraction. The study of the μeff(T) function in a temperature interval 2–300 K showed that compound I, which exhibited ferromagnetic exchange interactions in the chains, undergoes transition to antiferromagnetic state with weak ferromagnetism. The exchange antiferromagnetic interactions predominate in compound II.  相似文献   

7.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

8.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

9.
A series of mononuclear and binuclear cyclometalated platinum(II) complexes containing new terdentate meta-bis(2-pyridoxy)benzene ligands: 3,5-bis(2-pyridoxy)toluene (L1H) and 3,5-bis(2-pyridoxy)-2-dodecylbenzene (L2H): [Pt(L1)Cl] (1), [Pt(L2)Cl] (2), [Pt(L1)(CH3CN)](ClO4) (3), {[Pt(L1)]2(μ-dppm)}(ClO4)2 (4), {[Pt(L2)]2(μ-dppm)}(ClO4)2 (5), {[Pt(L1)]2(μ-pyrazole)}(ClO4) (6), {[Pt(L2)]2(μ-pyrazole)}(ClO4) (7), {[Pt(L1)]2(μ-imidazole)}(ClO4) (8) and {[Pt(L2)]2(μ-imidazole)}(ClO4) (9), have been synthesized and characterized. These ligands are coordinated to platinum(II) in a “pincer”-like manner and the presence of pyridyl donors enhances the availability of the ligand π orbitals for electronic transition. Spectroscopic properties of these cyclometalated complexes were studied. While the non-coplanar nature of the ligands hinders ligand-ligand and metal-metal interactions in these cyclometalated complexes, the presence of long hydrocarbon side chain on ligand L2H seems to alleviate such hindrance. Intermolecular π-π, and possibly Pt-Pt interactions were observed in complex 2 at high concentration.  相似文献   

10.
A series of bis-cyclometalated Ir(III) complexes (8-10, 12, 15, 17, 19, 21, 23, 25, 28, 29 and 33) bearing two chromophoric NC cyclometalated ligands derived from 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine (1) and a third nonchromophoric ligand has been synthesized. A palladium-catalyzed cross-coupling reaction between 2-chloro-4-methylpyridine (2) and 3,5-bis(trifluoromethyl)phenylboronic acid (3) was used to prepare 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine (1). Cyclometalation of (1) by IrCl3 was carried out in (MeO)3PO, with the formation of chloro-bridged dimer [NC]2Ir(μ-Cl)2Ir[CN]2 (8). Reaction of (8) with lithium 2,4-pentanedionate, lithium 2,2,6,6-tetramethyl-heptane-3,5-dionate (13), dipivaloyltrimethylsilylphosphine (14), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octadione (16), 1,1,1,3,3,3-hexafluoro-2-pyridin-2-yl-propan-2-ol (18), 1,1,1,3,3,3-hexafluoro-2-pyrazol-1-ylmethyl-propan-2-ol (20), 2-diphenylphosphanylethanol (22), and 1-diphenylphosphanylpropan-2-ol (24), afforded octahedral iridium complexes 9, 12, 15, 17, 19, 21, 23 and 25, respectively. Complex 10, which contains three different ligands (L1 = NC of 1; L2 = NC of 4,4′-dimethyl-[2,2′]bipyridinyl 4; L3 = OO of 2,4-pentanedione), and complex 11, which contains no cyclometalated ligands (L1 = 4; L2 = L3 = Cl; L4 = OO of 2,4-pentanedione) were also isolated as minor products in a one-pot reaction between a 94:5 mixture of 1 and 4, IrCl3 and lithium 2,4-pentanedionate. Reaction of 8 with diphenylphosphanylmethanol (27) in 1,2-dichloroethane unexpectedly led to complexes 28 and 29. The reactions of 8 with benzoylformic acid resulted in the formation of hydroxyl-bridged dimer [NC]2Ir(μ-OH)2Ir[CN]2 (33). According to X-ray analyses, Ir-to-Ir distances in the crystal cell increase from 6.86 Å for 10 to 13.31 Å for 33. The angle theta, which represents the twisting of two cyclometalated C-Ir-N planes relative to each other, varies from 97.5° for 21 to 90.76 for complex 28. OLED devices were fabricated from several Ir complexes and preliminary results are discussed.  相似文献   

11.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

12.
1-(Phenylselenomethyl)-1H-benzotriazole (L1) and 1-(4-methoxyphenyltelluromethyl)-1H-benzotriazole (L2) have been synthesized by reacting 1-(chloromethyl)-1H-benzotriazole with in situ generated nucleophiles PhSe and ArTe, respectively. The complexes of L1 and L2 with Pd(II) and Ru(II)(η6-p-cymene) have been synthesized. Proton, carbon-13, Se-77 and/or Te-125 NMR spectra authenticate both the ligands and their complexes. The single crystal structures of L1, L2 and [RuCl(η6-p-cymene)(L)][PF6] (L = L1: 3, L = L2: 4) have been solved. The Ru-Se and Ru-Te bond lengths have been found 2.4801(11) and 2.6183(10) Å, respectively. The palladium complexes, [PdCl2(L)] (L = L1: 1, L = L2: 2) have been explored for Heck and Suzuki-Miyaura C-C coupling reactions. The TON values are upto 95,000. The Ru-complexes have been found promising for catalytic oxidation of alcohols (TON ∼ 7.8-9.4 × 104). The complexes of telluroether ligands are as efficient catalysts as those of selenoether ones and in fact better for catalytic oxidation.  相似文献   

13.
Three novel Schiff base Cd(II) trimeric complexes, [Cd3(L1)2(SCN)2(CF3COO)2] (1), [Cd3(L1)2(SCN)2(HCONMe2)] (2) and [Cd3(L2)2{N(CN)2}2] (3) have been prepared from two different symmetrical Schiff bases H2L1 and H2L2 (where H2L1 = N1,N3-bis(salicylideneimino)diethylenetriamine, a potentially pentadentate Schiff base with a N3O2 donor set, and H2L2 = N1,N3-bis(3-methoxysalicylideneimino)diethylenetriamine, a potentially heptadentate Schiff base with a N3O4 donor set). All the complexes have been synthesised under similar synthetic procedures and their crystal structures have been established by single crystal X-ray diffraction methods. The ligands and their metal complexes have been characterised by analytical and spectroscopic techniques. Among the three complexes, 1 and 3 are linear whereas 2 is a cyclic trimer. In 1 and 3, all the doubly phenoxo bridged Cd(II) metal centres are in a distorted octahedral environment. In complex 2, two of the three Cd(II) centres reside in a distorted octahedral environment and the remaining one enjoys a monocapped octahedral geometry. Altogether the variety in the bridging mode of two new salen-type ligands has been established through these complexes.  相似文献   

14.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

15.
The synthesis, structure, spectroscopic and electro-spectrochemical properties of sterically constrained Schiff-base ligands (LnH) (n = 1, 2, and 3) (L = N-[m-(methylmercapto)aniline]-3,5-di-t-butylsalicylaldimine, m = 4, 3, and 2 positions, respectively) and their copper(II) complexes [Cu(Ln)2] are described. Three new dissymmetric bidentate salicylaldimine ligands containing a donor set of ONNO were prepared by reaction of different primary amine with 3,5-di-t-butyl-2-hydroxybenzaldehyde (3,5-DTB). The copper(II) metal complexes of these ligands were synthesized by treating an methanolic solution of the appropriate ligand with an equimolar amount of Cu(Ac)2 · H2O. The ligands and their copper complexes were characterized by FT-IR, UV–Vis, 1H and 13C NMR and elemental analysis methods in addition to magnetic susceptibility, molar conductivity, and spectroelectrochemical techniques. Analytical data reveal that copper(II) metal complexes possess 1:2 metal–ligand ratios. On the basis of molar conductance, the copper(II) metal complexes could be formulated as [Cu(Ln)2] due to their non-electrolytic nature in dimethylforamide (DMF). The room temperature magnetic moments of [Cu(Ln)2] complexes are in the range of 1.82–1.90 B.M which are typical for mononuclear of Cu(II) compounds with a S = 1/2 spin state. The complexes did not indicate antiferromagnetic coupling of spin at this temperature. Electrochemical and thin-layer spectroelectrochemical studies of the ligands and complexes were comparatively studied in the same experimental conditions. The results revealed that all ligands displayed irreversible reduction processes and the cathodic peak potential values of (L3H) are shifted towards negative potential values compared to those of (L1H) and (L2H). It is attributed to the weak-electron-donating methyl sulfanyl group substituted on the ortho (m = 2) position of benzene ring. Additionally, all copper complexes showed one quasi-reversible one-electron reduction process in the scan rates of 0.025–0.50 V s−1, which are assigned to simple metal-based one-electron processes; [Cu(2+)(Ln)2] + e → [Cu(1+)(Ln)2]. The spectral changes corresponding to the ligands and complexes during the applied potential in a thin-layer cell confirmed the ligand and metal-based reduction processes, respectively.  相似文献   

16.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

17.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

18.
The novel pyrazolyl containing ligands 4-(HOOC)pz(CH2)2NH(CH2)2NH2 (L1) and 4-(HOOCCH2)-3,5-Me2pz(CH2)2NH(CH2)2NH2 (L2), and 3,5-Me2pz(CH2)2S(CH2)2SCH2CH3 (L3), 3,5-Me2pz(CH2)2S(CH2)2SCH2COOEt (L4) and 3,5-Me2pz(CH2)2S(CH2)2SCH2COOH (L5) were synthesized, and their ability to stabilise complexes with the fac-[M(CO)3]+ (M = Re,99mTc) moiety was evaluated. Reactions of L1-L5 with the Re(I) tricarbonyl starting materials (NEt4)2[Re(CO)3Br3] and/or [Re(CO)5Br] afforded complexes fac-[Re(CO)33-L)] (L = L1-L5 (1-5)), which contain the pyrazolyl ancillary ligands coordinated in a tridentate fashion. Complexes 1-5 were characterized by the common analytical techniques, which included single crystal X-ray diffraction analysis in the case of 4. The structural analysis of 4 confirmed the tridentate coordination mode of the pyrazole-dithioether ligand, which is facially coordinated to the Re(I) centre through the nitrogen from the pyrazole ring and the two thioether sulphur atoms, without involvement of the terminal ester functional group. The distorted octahedral coordination environment around the metal is completed by the three facial carbonyl ligands. The radioactive congeners of complexes 1, 3 and 4, fac-[99mTc(CO)33-L)]+ (L = L1 (1a), L3 (3a), L4 (4a)), have been prepared by reacting the precursor fac-[99mTc(CO)3(H2O)3]+ with the corresponding ligands, and their identity confirmed by HPLC comparison with the rhenium surrogates. Complexes 1a and 3a have been challenged in the presence of a large excess of histidine or cysteine, in order to evaluate their in vitro stability. Only a negligible displacement was observed, indicating that pyrazole-diamine and pyrazole-dithioether chelators provide a high kinetic inertness and/or stability to organometallic complexes with the fac-[99mTc(CO)3]+ moiety.  相似文献   

19.
It was established that the reactions of pyrazol-3-yl-substituted nitronyl nitroxide (HL1) and pyrazol-3-yl-substituted imino nitroxide (HL3) with Cu(II) acetate lead to self-assembly of the Cu4(OH)2(OAc)4(DMF)2(L1)2 tetranuclear and Cu2(OAc)2(H2O)2(L3)2 dinuclear complexes, respectively. The reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted nitronyl nitroxide (HL2) gave unexpected solid Cu2(H2O)2(L6)2 · 2DMF, in which L6 is a deprotonated 5-carboxy-pyrazol-3-yl-substituted nitronyl nitroxide, formed as a result of cleavage of an ester bond in the starting HL2. A similar transformation of the paramagnetic ligand was observed in the reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted imino nitroxide (HL4). It led to the formation of Cu2(DMF)2(L7)2, where L7 is deprotonated 2-(5-carboxy-1H-pyrazol-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide. An X-ray diffraction study indicated that in Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(OAc)2(H2O)2(L3)2, the L1 and L3 paramagnetic ligands perform the bridging cyclic tridentate function, while in Cu2(H2O)2(L6)2 · 2DMF and Cu2(DMF)2(L7)2, the paramagnetic L6 and diamagnetic L7 are bridging bicyclic tetradentate ligands. The magnetic behavior of complexes with coordinated nitronyl nitroxide – Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(H2O)2(L6)2 · 2DMF is dictated by the dominant antiferromagnetic exchange interactions, which is confirmed by quantum-chemical data. The magnetic susceptibility of Cu2(OAc)2(H2O)2(L3)2 reflects the competition between the antiferromagnetic and ferromagnetic components, of which the latter is due to electron coupling in the Cu(II) ← N=C–N ? O exchange channels. EPR data confirm the results received from static magnetic measurements for multispin solids.  相似文献   

20.
Five mononuclear complexes of manganese(II) of a group of the general formula, [MnL(NCS)2] where the Schiff base L = N,N′-bis[(pyridin-2-yl)ethylidene]ethane-1,2-diamine (L1), (1); N,N′-bis[(pyridin-2-yl)benzylidene]ethane-1,2-diamine (L2), (2); N,N′-bis[(pyridin-2-yl)methylidene]propane-1,2-diamine (L3), (3); N,N′-bis[(pyridin-2-yl)ethylidene]propane-1,2-diamine (L4), (4) and N,N′-bis[(pyridin-2-yl)benzylidene]propane-1,2-diamine (L5), (5) have been prepared. The syntheses have been achieved by reacting manganese chloride with the corresponding tetradentate Schiff bases in presence of thiocyanate in the molar ratio of 1:1:2. The complexes have been characterized by IR spectroscopy, elemental analysis and other physicochemical studies, including crystal structure determination of 1, 2 and 4. Structural studies reveal that the complexes 1, 2 and 4 adopt highly distorted octahedral geometry. The antibacterial activity of all the complexes and their respective Schiff bases has been tested against Gram(+) and Gram(−) bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号