首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the performance of highly anisotropic nanostructured thin film ultrathin-layer chromatography (UTLC) media with porosity and architecture engineered using the glancing-angle deposition (GLAD) process. Our anisotropic structures resemble nanoblades, producing channel-like features that partially decouple analyte migration from development direction, offering new separation behaviours. Here we study GLAD-UTLC plate performance in terms of migration distance, plate number, retention factor and a figure of merit specific to GLAD-UTLC, track deviation angle. Migration distances increase with porosity by a factor of two for all feature orientations (up to a maximum of 22 mm) over the range of porosities considered in this study. Plate numbers approaching 1100 are observed for GLAD-UTLC plates when the nanoblade features are aligned with the development direction. We present a theoretical model describing mobile phase flow in anisotropic GLAD-UTLC media, and find good agreement with experimental results. Our plates provide channel features that reduce transverse spot broadening while providing the wide pores required for rapid migration and high separation performance. These improvements may enable a greater number of parallel separations on miniaturized GLAD-UTLC plate formats. Their small sizes should also make them compatible with the Office Chromatography concept in which office peripherals (inkjet printers and flatbed scanners) replace conventional TLC instruments. Equipped with a better understanding of the unique GLAD-UTLC elution behaviours, we expect to further improve performance in the future.  相似文献   

2.
As part of increasing research in the field of separation science, there have been many efforts to undertake planar chromatography with more efficient separation and better resolution in the shortest period of time, together with a specificity and a capability to identify more precisely an unknown compound present in a mixture. Ultra-thin layer chromatography (UTLC) is a modern technique which gives separation within 10–30 mm and development in just 1–6 min, with the consumption of less solvent. The stationary phase of UTLC is made up of a silica gel monolithic layer of 10 μm thickness having 3- to 4-nm mesopores and 1- to 2-μm macropores. Glancing angle deposition (GLAD)-UTLC is a modification of UTLC which gives separation within 15 mm distance and in less than 2 min. Anisotropic media of GLAD UTLC gives a unique migration direction effect. UTLC atmospheric pressure–matrix-assisted laser desorption ionizer–mass spectrometery (UTLC-AP-MALDI-MS) is a choice of technique for the identification of an unknown compound in a mixture or an impure form. ULTC-AP-MALDI-MS allows the fast changing of plates, produces more intact protonated molecules, less fragmentation and less entry of chromatographic material, and yielding less complicated spectra than the vacuum condition. Thus, UTLC is a useful technique for very rapidly giving the separation and identification of new components present in mixtures. This review provides a brief overview of UTLC, the stationary phases used for UTLC, and the detection options and applications of UTLC.  相似文献   

3.
Ultrathin-layer chromatography (UTLC) differs from high-performance thin-layer chromatography (HPTLC) and from thin-layer chromatography (TLC) in two basis things: the layer thickness, and the migration distances of the analytes. UTLC has a monolithic or a nanostructured stationary silica gel phase bound directly to the glass plates. Layer thickness in UTLC is 10 μm, instead of 100–250 μm in HPTLC. Migration distances are in the range of 1–3 cm for UTLC, instead of 8–10 cm for HPTLC. Therefore, the major advantages of UTLC over HPTLC and TLC are the shorter development times and higher separation efficiency and sensitivity. Moreover, separations on UTLC plates require smaller reagent and sample volumes. However, the UTLC plates are very difficult to manage with the TLC and HPTLC equipment currently available. Therefore, the next challenge in this area is the development of an inexpensive solution with appropriate instrumentation (sensitive optical scanners and sample application systems). UTLC had been used for separations of many compounds, e.g., pharmaceutically active ingredients, pesticides, plasticisers, natural products, and other chemical substances.  相似文献   

4.
The development of ultrathin-layer silica gel plates with a monolithic structure opens up a new dimension in thin-layer chromatography (TLC). The very small layer thickness of approximately 10 microm and the absence of any kind of binder in combination with the framework of this stationary phase lead to new and improved properties of these ultrathin-layer chromatographic (UTLC) silica-gel plates compared with conventional TLC and high-performance TLC (HPTLC) precoated layers. First of all, the advantages of the UTLC plates are the very short migration distances and, in combination with this, the short development times as well as the very low consumption of solvents as the mobile phase in connection with high sensitivity. The separations of amino acids, pesticides, pharmaceutically active ingredients, phenols, and plasticizers effectively demonstrate the possibilities of the new ultrathin-layer silica-gel plates. Furthermore, a comparison of UTLC, HPTLC, and TLC concerning retention behavior, efficiency, detection limits, migration times, and solvent consumption is performed effectively by the separation of caffeine and paracetamol.  相似文献   

5.
Ultrathin layer chromatography (UTLC) is a relatively new variant of thin layer chromatography, with a 10mum thick monolithic silica sorbent layer that gives faster separations with lower limits of detection and reduced analyte and solvent volumes. We have produced UTLC plates with controllable nanostructure and thickness, and show that the layer separation characteristics depends on the film nanostructure. We also show that layers made with in-plane anisotropic nanostructures will exhibit a decoupling effect, where the analyte spots do not develop in the same direction as the solvent front movement. The added layer morphology and material selection adds a degree of freedom to UTLC, and may have applications in multi-dimensional TLC.  相似文献   

6.
This paper presents a review of the literature concerning development of the stationary phases for thin-layer chromatography (TLC) in the last ten years. The silica gel remains the most important adsorbent for TLC separation. The kinetic properties of the silica-gel thin layer and the new TLC plates have been presented. Other materials used as stationary phase were alumina, zirconium oxide, Florisil, and ion-exchanger. Chemically new bonded stationary phase development is also discussed. The improvement of the separations of some organic mixtures by impregnation of silica gel, cellulose, or polyamide plates (with transition metal ions and silver salts) and their applications is presented. The impregnation of the thin layer with organic stationary phase and inclusion complexes is another method used for the enhancement of the separation efficiences. Another modality to improve the selectivity in TLC using ion-pairing as reagent of impregnation is described as well. The actual state of chiral separation by TLC is discussed with concrete references to recent advances in chiral stationary phases. The use of nonpolar chemically bonded stationary phases impregnated with transitional metal ions is presented as chiral stationary phases. The cellulose, modified cellulose, chitin, chitosan, and their derivatives are presented and their potential for the analysis of the racemates is discussed. The cyclodextrines and macrocyclic antibiotics were used with very good results for enantiomeric separation by TLC. A new separation approach with molecular imprinting polymers was reported as a chiral stationary phase in TLC. The examples provide a wide range of structural types that can be readily resolved enantiomerically by TLC.  相似文献   

7.
The application of carbon nanotube or nanorod/polyacrylonitrile (PAN) composite electrospun nanofibrous stationary phase for ultrathin layer chromatography (UTLC) is described herein. Multi-walled carbon nanotubes (MWCNTs) and edge-plane carbon (EPC) nanorods were prepared and electrospun with the PAN polymer solution to form composite nanofibers for use as a UTLC stationary phase. The analysis of laser dyes demonstrated the feasibility of utilizing carbon nanoparticle-filled electrospun nanofibers as a UTLC stationary phase. The contribution of MWCNT or EPC in changing selectivity of the stationary phase was studied by comparing the chromatographic behavior among MWCNT–PAN plates, EPC–PAN plates and pure PAN plates. Carbon nanoparticles in the stationary phase were able to establish strong π–π interactions with aromatic analytes. The separation of five polycyclic aromatic hydrocarbons (PAHs) demonstrated enhanced chromatographic performance of MWCNT-filled stationary phase by displaying substantially improved resolution and separation efficiency. Band broadening of the spots for MWCNT or EPC-filled UTLC stationary phases was also investigated and compared with that for pure PAN stationary phases. A 50% improvement in band dispersion was noted using the MWCNT based composite nanofibrous UTLC plates.  相似文献   

8.
The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous,organic and mixed mobile phases.The separation of one ion from several other ions and also ternary and binary separations have been developed.Some important analytical separations are reported.The effect of pH of the mobile phase on retention factor(Rf)values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied.This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationary phase in thin layer chromatography.  相似文献   

9.
The liquid chromatography enantiomeric separation of a series of 17 chiral sulfoxides was systematically investigated using multimodal elution with the new synthetic polymeric stationary phases P-CAP, P-CAP DP and DEAVB. The sulfoxide series was composed of aryl alkyl sulfoxides, benzoimidazole sulfoxides and the drugs modafinil, albendazole sulfoxide, omeprazole, lansoprazole, pantoprazole and rabeprazole. This work examines the effectiveness of the polymeric chiral stationary phases for the separation of chiral sulfoxides and describes the superiority of DEABV for these separations in three different elution modes. The first ever reversed phase enantiomeric separations on these columns is demonstrated.  相似文献   

10.
Ultrathin-layer chromatography (UTLC) potentially offers faster analysis, reduced solvent and sample volumes, and lower costs. One novel technique for producing UTLC plates has been glancing angle deposition (GLAD), a physical vapor deposition technique capable of aligning macropores to produce interesting separation properties. To date, however, GLAD-UTLC plates have been restricted to model dye systems, rather than realistic analytes. This study demonstrates the transfer of high-performance thin-layer chromatography (HPTLC) sugar analysis methods to GLAD-UTLC plates using the office chromatography framework. A consumer inkjet printer was used to apply very sharp low volume (3–30 nL) bands of water-soluble analytes (lactose, sucrose, and fructose). Analytic performance measurements extrapolated the limits of detection to be 3–5 ng/zone, which was experimentally proven down to 60–70 ng/band, depending on the sugar. This qualitative analysis of sugars in a commercially available chocolate sample is the first reported application of GLAD-UTLC to food samples. The potential utility of GLAD-UTLC is further exemplified by successful coupling with electrospray ionization mass spectrometry for the first time to characterize underivatized sugars.
Figure
An inkjet printer applied small volumes of sugar sample to miniaturized planar chromatography plates (a) fabricated from nanostructured silica GLAD thin films (b). The separated sugars were derivitized and imaged. A chromatogram (c) was produced for each separation track (blue box).  相似文献   

11.
A simple, elegant method for the formation of a continuous stationary phase gradient for use in chromatographic separations is described. Its applicability to separation science is demonstrated using thin-layer chromatography as a test case. Gradient stationary phases were formed on activated High Performance Thin-Layer Chromatography (HP-TLC) plates using a newly developed methodology termed "controlled rate infusion". Specifically, the SiOH groups on the activated HP-TLC plates were reacted with 3-aminopropyltriethoxysilane (APTEOS) in a time dependent fashion by using a programmable syringe pump to control the rate of APTEOS infusion into the deposition reservoir. The shape (profile) of the gradient was controlled by the rate of infusion and imaged by taking advantage of the concentration-dependent color formation reaction between amine groups and ninhydrin. The advantages of such gradients in optimizing the retention and separation of various components in different mixtures were illustrated using mixtures of (1) four weak acids and bases and (2) three widely used over-the-counter drugs. The separation of the individual components on the gradient stationary phase was clearly improved relative to those on either traditional normal-phase TLC plates or uniformly amine-modified TLC plates. Precise control over component retention and separation was also demonstrated by strategically modifying the steepness of the gradient.  相似文献   

12.
Abstract

A method for the thin layer chromatographic (TLC) separation of enantiomers and diastereomers involving the use of chiral ion interaction agents is described. Several aromatic amino alcohols were resolved by TLC on diol and/or high performance silica gel plates using a mobile phase containing (1R)-(-)- ammonium-10-camphorsulfonate or N-benzoxycarbonyl-glycyl-L-proline (ZGP). Many of these chiral aromatic amino alcohols are of pharmacological importance as α- and β-adrenergic blockers, adrenergic compounds, and anti-glaucoma agents. A comparison was made between various N-CBZ-amino acid derivatives as chiral counter ions/chiral mobile phase additives (CMAs). These separations could not be achieved on other normal phase TLC stationary phases including microcrystalline cellulose, alumina and ordinary silica gel plates.  相似文献   

13.
YoshihiroSaito 《色谱》2003,21(6):638-648
Development of miniaturized separation system consisted of microscale extraction and liquid phase separation processes has been reviewed. Various types of novel bonded stationary phases have been developed on the basis of the systematic analysis for the retention behavior of polycyclic aromatic hydrocarbons on experimentally synthesized phases. In this review, the miniaturization of microscale sample preparation technique and the effective on-line coupling to microcolumn liquid phase separations are also described especially focusing on the approach by the author‘‘s group. The novel use of synthetic polymer filaments as the stationary phase and extraction media in those microscale separation systems will be introduced along with the applications in gas chromatographic separation.  相似文献   

14.
Summary During the past decade, HPLC has developed into a powerful new technique for the analysis of complex mixtures of biological macromolecules. Through the use of microparticulate supports of vastly improved mechanican strength, superior stationary phase chemistry, and advanced instrumentation, it is now possible to separate biological macromolecules more than 10 times faster and with greater resolution than in the classical SEC, IEC, HIC, bioaffinity, and hydroxyapetite chromatography columns. Additionally, the introduction of new separation modes such as RPC and metal chelate make it possible to carry out separations that were not possible with the classical gel-type media. It is anticipated that 1) expanded use of non-porous media, 2) development of new stationary phases for carbohydrates, 3) greater throughput and resolution in preparative separations, and 4) better understanding of retention mechanisms are a few of the areas of macromolecular separations in which advances can be expected in the next few years.  相似文献   

15.
Since 1980, high-speed counter-current chromatography (HSCCC) has been used for separation and purification of natural and synthetic products in a standard elution mode. In 1991, a novel elution mode called pH-zone refining CCC was introduced from an incidental discovery that an organic acid in the sample solution formed the sharp peak of an acid analyte. The cause of this sharp peak formation was found to be bromoacetic acid present in the sample solution which formed a sharp trailing border to trap the acidic analyte. Further studies on the separation of DNP-amino acids with three spacer acids in the stationary phase revealed that increased sample size resulted in the formation of fused rectangular peaks, each preserving high purity and zone pH with sharp boundaries. The mechanism of this phenomenon was found to be the formation of a sharp trailing border of an acid (retainer) in the column which moves at a lower rate than that of the mobile phase. In order to facilitate the application of the method, a new method was devised using a set of retainer and eluter to form a sharp retainer rear border which moves through the column at a desired rate regardless of the composition of the two-phase solvent system. This was achieved by adding the retainer in the stationary phase and the eluter in the mobile phase at a given molar ratio. Using this new method the hydrodynamics of pH-zone-refining CCC was diagrammatically illustrated by three acidic samples. In this review paper, typical pH-zone-refining CCC separations were presented, including affinity separations with a ligand and a separation of a racemic mixture using a chiral selector in the stationary phase. Major characteristics of pH-zone-refining CCC over conventional HSCCC are as follows: the sample loading capacity is increased over 10 times; fractions are highly concentrated near saturation level; yield is improved by increasing the sample size; minute charged compounds are concentrated and detected at the peak boundaries; and elution peaks are monitored with a pH flow meter for compounds with no chromophore. Since 1994, over 70 research papers on pH-zone-refining CCC have been published with the trends increasing in the recent years.  相似文献   

16.
It was the intention of this paper to show some recent developments in thin layer chroma-togrphy aiming at increasing the separation efficiency by instrumental means and techniquesusing existing separation layers. Gradient elution in the normal phase is a most efficient wayto achieve this goal. Multi-dimensional separations by coupling gradient elution column liquid chromatography inthe reversed phase with AMD gradient elution in normal phase is suitable to achieve newdimensions of separation numbers. Assuming that the N numbers reported for HPLC translateinto separation numbers near 100, by coupling the two kinds of chromatography, separationnumbers around 500 become practically usable.  相似文献   

17.
Variations of a thermal immobilization procedure using poly(methyltetradecilsiloxane) and silica produced fourteen stationary phases with carbon contents of 4-18%. The stationary phases were chromatographically evaluated with the Engelhardt, SRM 870 and Tanaka tests. Classifications using USP and Euerby procedures indicate that the new immobilized phases are different from most commercial phases although there was some similarity with phases that have high ion-exchange interactions. The retention mechanism involved in the separation of basic solutes on several of the new stationary phases was studied by varying pH, type of Lewis base and the ionic strength of the eluent. The separations are strongly influenced by the chemistry of the accessible free silanols. The stationary phases present good selectivity at intermediate pH where the basic analytes were protonated, suggesting use of intermediate pH for these separations. Stability tests show that the stationary phases have poor stability at very high pH, even at 23°C, but good stability in acidic mobile phases, even at 75°C, as expected for an immobilized polymer stationary phase.  相似文献   

18.
H. Kalász 《Chromatographia》2005,62(13):s57-s62
The advantages and variations of thin-layer chromatography are described in detail. The displacement mode of development is generated in a relatively short distance, and the fully developed displacement train concentrates sample components even from an elongated spot. Two-dimensional TLC using both elution and displacement thin-layer chromatography enables excellent separation of spots; results from 2D TLC cannot, however, be derived directly from two one-dimensional runs. Secondary mobile-phase fronts occur because of the dry state of stationary phase, which absorbs the mobile phase. Occasional problems with the reproducibility of RF values arise because of adsorption of the mobile phase components by the dry stationary phase and evaporation at the solvent front. The use of 2D TLC in pharmacognosy enables separation of the components and also helps in the planning of preparative-scale separations by classical column chromatography and/or HPLC.  相似文献   

19.
A crosslinkable biphenylmethylpolysiloxane stationary phase was synthesized for capillary column gas chromatography and compared with methyl, phenyl, and cyanopropyl polysiloxane stationary phases for the separation of isomeric polycyclic aromatic compounds. While the new phase gave similar separations of nonpolar isomers when compared to the nonpolar phases, separations of polar isomers were greatly improved because of the induced polarity of the biphenyl group of the stationary phase by the solute molecules. This polarizable stationary phase offers a unique selectivity which is not available in other stationary phases.  相似文献   

20.
Abstract

Comparisons are made for separations attained in normalphase HPLC and TLC involving N-carbobenzyloxy-glycyl-L-proline and (+/?)?10-camphorsulfonic acid as chiral mobile phase additives/chiral counter ions (CMA). Possible reasons for differences in stereoselectivity of β-cyclodextrin CMA and chiral stationary phases (CSP) are discussed. In addition, differences in solubility and proposed separation mechanisms for native cyclodextrins (CD) versus derivatized CD are discussed. Inherent differences in high performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) methods are outlined. The pros and cons of using HPLC and TLC are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号