首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of diorganotin complexes of the type R2SnL (L1: N‐(2‐hydroxy‐5‐chlorophenyl)‐ 3‐ethoxysalicylideneimine, R = Me, (Me2SnL1), R = n‐Bu, (n‐Bu2SnL1), R = Ph, (Ph2SnL1), L2: N‐(2‐hydroxy‐4‐nitro‐5‐chlorophenyl)‐3‐ethoxysalicylideneimine, R = Ph, Ph2SnL2, L3: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐methoxysalicylideneimine, R = Me, (Me2SnL3), R = n‐Bu, (n‐Bu2SnL3), L4: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐ethoxysalicylideneimine, R = Me, (Me2SnL4), R = n‐Bu, (n‐Bu2SnL4)) were synthesized and characterized by elemental analysis, infrared (IR), 1H, and 13C NMR mass spectroscopic techniques, and electrochemical measurements. Ph2SnL1 and Ph2SnL2 were also characterized by X‐ray diffraction analysis and were found to show a fivefold C2NO2 coordination geometry nearly halfway between a trigonal bipyramidal and distorted square pyramidal arrangement. The C Sn C angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn‐13C) and 2J(117/119Sn‐1H) values from the 1H NMR and 13C NMR spectra. Biocidal activity tests against several micro‐organisms and some fungi indicate that all the complexes are mildly active against Gram (+) bacteria and the fungi, A. niger and inactive against Gram (−) bacteria. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:373–385, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20628  相似文献   

2.
Four monomeric [n-Bu2SnL2 (1), Et2SnL2 (2), Me2SnL2 (3), and n-Oct2SnL2 (7)] and three polymeric {[n-Bu3SnL]n (4), [Me3SnL]n (5), and [Ph3SnL]n (6)} organotin(IV) carboxylates, where L?=?4-chlorophenylethanoate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Compounds 2 and 5 were also analyzed by X-ray single-crystal analysis showing monomeric and zigzag structures, respectively. Two types of O…H (2.641?Å) and Cl…H (2.943?Å) non-covalent interactions generate a 2-D supramolecular structure for 2. Layer-by-layer supramolecular structure was observed for 5 in which polymeric chains are connected via non-covalent interactions {Cl…H (2.869?Å), H…π (2.899?Å)}, and unconventional dihydrogen {H…H (2.381?Å)} interactions.  相似文献   

3.
Three diorganotin(IV) series and triorganotin(IV) complexes, [(C6H11)2Sn]4(L1)2O2(OH)2 (1), (C6H11)3Sn(HL2) (2), and (C6H11)3SnL3 (3) (where HL1 is 2-(4-isopropyl benzoyl) benzoic acid, H2L2 is phthalic acid and HL3 is 2-benzoyl benzoic acid), were synthesized and their crystal structures were determined. There are four crystallographically unique Sn centers in the structure of 1, which consists of a Sn4O2(OH)2 ladder unit, and the ladder consists of four tins held together by two µ3-oxygens and two µ2-oxygens. The supermolecular motif of 1 is a 2-D structure linked by O–H ··· O hydrogen bonds. The asymmetric unit of 2 contains two crystallographically independent monomers. The supramolecular architecture of 2 is a 2-D layer structure linked by face-to-face π–π interactions between phenyl rings of adjacent L2 anions. The structure of 3 contains one tricyclohexyltin cation and one L3 anion. The Sn ··· O interactions lead the whole structure to a supramolecular chain. Elemental analysis, infrared, and 1H NMR of 13 were investigated and discussed.  相似文献   

4.
New organotin(IV) carboxylates, [n-Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [n-Oct2SnL2] (4), [n-Bu3SnL] n (5), [Me3SnL] n (6), and [Ph3SnL] n (7), where L?=?3-(4-bromophenyl)-2-ethylacrylate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Spectroscopic studies confirm coordination of L to the organotin moiety via COO group. Single-crystal X-ray analysis reveals bridging mode of coordination in 6. Packing diagram established a supramolecular cage-like structure for 6 due to Sn–O interactions (3.287?Å). Subsequent antimicrobial activities proved them to be active biologically.  相似文献   

5.
The reactions of 5,5-dimethyl-3-oxo-1-pyrroline 1-oxide (3-oxo-DMPO, 1) with NH2OH and N2H4 afforded oxime (2a) and hydrazone (2b), respectively. The reaction products were studied as spin traps for the short-lived radicals HO·, Ph·, PhCO2 ·, NC(Me2)C·, and NC(Me2)CO·. The nitroxides generated in the reactions of the above-mentioned short-lived radicals with nitrones 1 and 2a,b were characterized by ESR spectroscopy. Of these nitrones, oxime 2a is the most effective radical trap.  相似文献   

6.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

7.
Reactions of sodium 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olates (LH, where the aryl group is an R-substituted phenyl ring such that for L1H: R = H; L2H: R = 2′-CH3; L3H: R = 3′-CH3; L4H: R = 4′-CH3; L5H: R = 4′-OCH3 and L6H: R = 4′-OC2H5) with Ph3SnCl in a 1:1 molar ratio yielded complexes of composition Ph3SnL. The complexes have been characterized by 1H, 13C, 119Sn NMR, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of Ph3SnL1 · 0.5C6H6 (1), Ph3SnL2 (2), Ph3SnL5 · C6H6 (5) and Ph3SnL6 · 0.5C6H6 (6) were determined. The results of the X-ray studies indicated that the benzene solvated compounds 1, 5 and 6 are distorted square pyramid, with one of the phenyl C atoms in the apex while the ligand arrangement around central Sn atom in 2 is distorted trigonal-bipyramidal, with a phenyl C and the oxinato N atoms in axial positions.  相似文献   

8.
A series of anionic five-coordinate binary oxorhenium(V) complexes with dithiolato ligands, Bu4N[ReO(L1)2] (1a), Bu4N[ReO(L2)2] (1b), and Bu4N[ReO(L3)2] (1c), and a series of neutral octahedral ternary oxorhenium(V) complexes of mixed dithiolato and bipyridine ligands, [ReO(L1)(bpy)Cl] (2a), [ReO(L2)(bpy)Cl] (2b), and [ReO(L3)(bpy)Cl] (2c) (where L1H2 = ethane-1,2-dithiol, L2H2 = propane-1,3-dithiol, L3H2 = toluene-3,4-dithiol, and bpy = 2,2′-bipyridine), were isolated and characterized by physicochemical and spectroscopic methods. The solid state structure of 1c was established by X-ray crystallography. All the mononuclear oxorhenium(V) complexes are diamagnetic. The redox behavior of all the complexes has been studied voltammetrically.  相似文献   

9.
The known organotin(IV) complexes with 2-mercaptopyrimidine (L) [Me2SnL2] (1), [Bun 2SnL2] (2), [Ph2SnL2] (3), and [Ph3SnL] (4) were synthesized using a new approach. The effect of the synthesized compounds on peroxidation of fatty acids (oleic and linoleic) was studied. Complexes 1–4 promote the peroxidation of oleic acid. Their effect on the enzymatic peroxidation of linoleic acid with lipoxygenase was compared with that of cisplatin and in vitro cytoxicity against sarcoma cancer cells was determined. The antiproliferative effect of complexes 2–4 was demonstrated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 737–743, April, 2007.  相似文献   

10.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

11.
Tin(IV) complexes of the series of dianionic terdentate Schiff bases N‐[(2‐pyrroyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine, (H2L1), N‐[(2‐hydroxyphenyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine (H2L2) and some R substituted 2‐{[(2‐hydroxyphenyl)imino]methyl}phenols [R = H (H2L3), 4,6‐(OCH3)2 (H2L4), 3‐(OC2H5) (H2L5) and 3,5‐Br2 (H2L6)] have been synthesized. The compounds were obtained by the electrochemical oxidation of a tin anode in a cell containing an acetonitrile solution of the corresponding ligand. The complex [SnL12] was also obtained by reaction of SnCl2·2H2O and H2L1 in methanol in the presence of triethylamine. The crystal structure of the ligand [H2L6] and the complexes [SnL12] (1) , [SnL22] (2) , [SnL32] (3) and [SnL62] (6) were determined by X‐ray diffraction. In the complexes, the tin atom is in an octahedral environment coordinated by two dianionic terdentate ligands. Spectroscopic data for the complexes (IR, 1H and 119Sn NMR and mass spectra) are discussed and related to structural information.  相似文献   

12.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

13.
Four coordination polymers, [Ag(L1)](m-Hbdc) (1), [Ag(L1)]2(p-bdc)?·?8H2O (2), [Ag(Hbtc)(L1)][Ag(L1)]?·?2H2O (3) and [Ag2(L2)2](OH-bdc)2?·?4H2O (4), where L1?=?1,1′-(1,4-butanediyl)bis(imidazole), L2?=?1,2-bis(imidazol-1-ylmethyl)benzene, m-H2bdc?=?1,3-benzenedicarboxylic acid, p-H2bdc?=?1,4-benzenedicarboxylic acid, H3btc?=?1,3,5-benzenetricarboxylic acid, and OH–H2bdc?=?5-hydroxisophthalic acid, were synthesized under hydrothermal conditions. Compound 1 contains a–Ag-L1–Ag-L1–chain and a hydrogen-bonding interaction induced–(m-Hbdc)-(m-Hbdc)–chain. Compound 2 consists of two independent–Ag-L1–Ag-L1–chains. P-bdc anions are not coordinated. Hydrogen bonds form a 3D supramolecular structure. A novel (H2O)16 cluster is formed by lattice water molecules in 2. Compound 3 contains a–Ag-L1–Ag-L1–and a–Ag(Hbtc)-L1–Ag(Hbtc)-L1–chain. The packing diagram shows a 2D criss-cross supramolecular structure, with?π?···?π?and C–H ···?π?interactions stabilizing the framework. Compound 4 contains a [Ag2(L2)2]2+ dimer with hydrogen-bonding,?π?··· π, and Ag ··· O interactions forming a 3D supramolecular framework. The luminescent properties for these compounds in the solid state are discussed.  相似文献   

14.
Two new coordination polymers, namely [Zn3(1,3,5-BTC)2(L1)2(H2O)2] · 2H2O (1) and [Cd3(1,2,3-BTC)2(L2)3] · H2O (2) (where L1 = 1,2-bis(imidazol-1-ylmethyl)benzene, L2 = 1,1′-(1,4-butanediyl)bis(imidazole), 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid and 1,2,3-H3BTC = 1,2,3-benzenetricarboxylic acid), were synthesized in hydrothermal conditions. In 1, each 1,3,5-BTC anion coordinates to three Zn cations, and the framework of 1 can be simplified as (6 · 8 · 10)2(62 · 8 · 103)(82 · 10)(62 · 10) topology. In 2, 1,2,3-BTC anions coordinate to three cadmiums, and the whole structure displays a (62 · 84)2(64 · 8 · 10)(62 · 8)2 network containing three different types of nodes. The luminescent properties for 1 and 2 are discussed.  相似文献   

15.
Tariq  M.  Sirajuddin  M.  Ali  S.  Khalid  N.  Shah  N. A. 《Russian Journal of General Chemistry》2017,87(11):2690-2698

Six new organotin(IV) carboxylates, [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), [n-Bu3SnL] (5) and [Ph3SnL] (6), where L = 3-(4-ethoxyphenyl)-2-methylacrylate, have been synthesized and characterized by FT-IR, NMR spectroscopy and elemental analyses. The synthesized compounds were tested for in vitro antibacterial and antifungal activities. The complexes 4–6 demonstrated higher activity than the complexes 1–3. UV-Vis absorption spectroscopy indicated that the ligand and its complexes interacted with DNA via partial intercalation as well as minor groove binding.

  相似文献   

16.
The nucleophilic addition of 2,4-dithiobiurete, 1- and 1,4-substituted 2,4-dithiobiuretes (2 a-e) with benzoylacetylene (1) has been studied. 2-(Benzoylmethyl)-4-(R1-imino)-6-(R2-imino)dihydro-4H-1,3,5-dithiazinium perchlorates (3 a-e) are obtained in glacial acetic acid (AcOH) in the presence of equimolar quantities of HClO4. The reaction of benzoylacetylene with 1,5-diphenyl-2,4-dithiobiurete in either of MeOH, C6H6, or MeCN solvents proceeds non-selectively to give a mixture of products such as 2-(benzoylmethyl)-4,6-di(phenylimino)dihydro-4H-1,3,5-dithiazine (5), 2-(benzoylmethyl)-4-(β-benzoylvinyl)thio-3-phenyl-6-(phenylimino)-3,6-dihydro-2H-1,3,5-thiadiazine (8), 2-(benzoylmethyl)-1,3-diphenylhexahydro-1,3,5-triazine-4,6-dithione (7) and N-(β-benzoylvinyl)-N-phenylthioureas (6).  相似文献   

17.
The reaction of triphenyltin(IV) hydroxide with the isophthalic acid and benzoic acid derivatives, 5‐(1,3‐dioxo‐1,3‐dihydro‐isoindol‐2‐yl)‐isophthalic acid (H2L1) and 4‐(1,3‐dioxo‐1,3‐dihydro‐isoindol‐2‐yl)‐benzoic acid (HL2) yielded the complexes [(SnPh3)2L1] ( 1 ) and [(SnPh3)L2] ( 2 ). All complexes were characterized by elemental analysis and FT‐IR and NMR (1H, 13C, 119Sn) spectroscopy. Interestingly, the supramolecular structures of 1 and 2 are found to consist of 1D molecular chains built up by intermolecular C–H ··· O hydrogen bonds. Their thermal stabilities were also investigated.  相似文献   

18.
The Schiff bases H2La, H2Lb, and H2Lc have been prepared from the reaction of 2-amino-4-chlorophenol with acetylacetone, benzoylacetone, and dibenzoylmethane, respectively. Organotin(IV) complexes [SnPh2(La)] (1), [SnPh2(Lb)] (2), [SnPh2(Lc)] (3), and [SnMe2(Lc)] (4) have been synthesized from the reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. Spectroscopic data suggest the Schiff bases are completely deprotonated and coordinated tridentate to tin via imine nitrogen and phenolic and enolic oxygen atoms; the coordination number of tin is five. Thermal decomposition of the complexes has been studied by thermogravimetry. The in vitro antibacterial activities of the Schiff bases and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La, H2Lc, and all complexes exhibited good activities and have potential as drugs.  相似文献   

19.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

20.
Abstract

The organotin(IV) complexes, SnPh2La (1), SnMe2La (2), SnBu2La (3), SnPh2Lb (4), SnMe2Lb (5), SnPh2Lc (6), SnMe2Lc (7), and SnBu2Lc (8) were obtained by reaction of SnR 2Cl2 (R = Ph, Me, and Bu) with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2La), 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide (H2Lb), and 1-(2-hydroxy-3-methoxybenzylidene)-4-phenylthiosemicarbazide (H2Lc). The synthesized complexes have been investigated by elemental analysis, IR, 1H NMR, and 119Sn NMR spectroscopy. The data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is 5. The in vitro antibacterial activities of the ligands and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and compared with the standard antibacterial drugs.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures and tables]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号