首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

2.
An unexpected dinuclear Cu(II) complex, [Cu2(L2)2] (H2L2?=?3-methoxysalicylaldehyde O-(2-hydroxyethyl)oxime), has been synthesized via complexation of Cu(II) acetate monohydrate with H4L1. Catalysis by Cu(II) results in unexpected cleavage of two N–O bonds in H4L1, giving a dialkoxo-bridged dinuclear Cu(II) complex possessing a Cu–O–Cu–O four-membered ring core instead of the usual bis(salen)-type tetraoxime Cu3–N4O4 complex. Every complex links six other molecules into an infinite-layered supramolecular structure via 12 intermolecular C–H?···?O hydrogen bonds. Furthermore, Cu(II) complex exhibits purple emission with maximum emission wavelength λmax?=?417?nm when excited with 312?nm.  相似文献   

3.
L-脯氨酸独有的亚胺基使其在生物医药领域具有许多独特的功能,并广泛用作不对称有机化合物合成的有效催化剂。本文在碱性介质中研究了二(氢过碘酸)合银(III)配离子氧化 L-脯氨酸的反应。经质谱鉴定,脯氨酸氧化后的产物为脯氨酸脱羧生成的 γ-氨基丁酸盐;氧化反应对脯氨酸及Ag(III) 均为一级;二级速率常数 k′ 随 [IO4-] 浓度增加而减小,而与 [OHˉ] 的浓度几乎无关;推测反应机理应包括 [Ag(HIO6)2]5-与 [Ag(HIO6)(H2O)(OH)]2-之间的前期平衡,两种Ag(III)配离子均作为反应的活性组分,在速控步被完全去质子化的脯氨酸平行地还原,两速控步对应的活化参数为: k1 (25 oC)=1.87±0.04(mol·L-1)-1s-1,∆ H1=45±4 kJ · mol-1, ∆ S1=-90±13 J· K-1·mol-1 and k2 (25 oC) =3.2±0.5(mol·L-1)-1s-1, ∆ H2=34±2 kJ · mol-1, ∆ S2=-122 ±10 J· K-1·mol-1。本文第一次发现 [Ag(HIO6)2]5-配离子也具有氧化反应活性。  相似文献   

4.
The isomerization of the complex trans-meso-CH3Co(H2O)L2+ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) to trans-primary, rac-CH3Co(H2O)L2+ has been investigated from pH range 7.11 to 8.09 in aqueous solution. The reaction rate law has been determined as: -d[meso-CH3Co(H2O)L2+]/dt = kOH [OH?][meso-CH3Co(H2O)L2+], where kOH = 600 ± 10 M?1s?1 at 25 °C and μ = 0.5 M. The activation parameters of the reaction were also studied with ΔH± = 19.1 ± 0.9 Kcal mol?1 and ΔS± = 18.0 ± 0.8 cal K?1mol?1. A mechanism that involves a secondary NH inversion is proposed.  相似文献   

5.
A copper(II) complex with 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)pyrimidin-4-amine (L), [CuLCl2], has been synthesized. This compound is formed irrespective of the Cu?:?L molar ratio (Cu?:?L?=?1?:?1, 2?:?1, and 20?:?1) in the MeOH/H2O/DMF mixture as a single product. ESI-MS data demonstrate that the additional amount of CuCl2 above the Cu?:?L?=?1?:?1 molar ratio, is effectively solvated, and high-nuclearity species are formed in trace amounts in the solution. The complex adopts a distorted square-pyramidal geometry with two chlorides and three nitrogen atoms from L. The electronic spectrum of the complex contains a broad band with a maximum at 12,820?cm?1 within the region characteristic for square-pyramidal chromophores CuA5 (A?=?Cl, N). Due to Cu?···?Cl contacts, the molecules of [CuLCl2] form the dinuclear [CuLCl2]2 unit. Surprisingly, the NH2-group participates in the formation of NH?···?Cl hydrogen bonds instead of the formation of (NH?···?N3(pyrimidine))2 synthon, which is common for N-heteroaromatic compounds containing the NH2-group in the α-position to aza-atom. These hydrogen bonds together with Cu?···?Cl contacts result in the formation of a 3-D-structure.  相似文献   

6.
Volumes of activation for the base hydrolysis of the dichromate anion have been measured at 298.2 K, using high-pressure stopped-flow spectrophotometry. The values of ΔV* (cm3 · mol?1), ? 17.9 ± 0.6, ? 19.2 ± 0.9, ? 24.9 ± 0.9 and ? 26.0 ± 0.7 for OH?, NH3, H2O and 2,6-lutidine, respectively, are consistent with an interchange mechanism with associative activation mode (Ia).  相似文献   

7.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

8.
The interaction of HE–Eu(III) complex (HE?=?hematoxylin) with Herring-sperm DNA (hsDNA) has been studied by absorption spectra, fluorescence, and viscosity measurements in physiological buffer (pH?=?7.40). The binding constant of HE–Eu(III) complex to hsDNA was obtained by double reciprocal method at 298 and 310?K and the corresponding thermodynamic parameters (Δr Hm??=?8.55?×?104?J?mol?1, Δr Gm??=??3.01?×?104?J?mol?1, Δr Sm??=?387.95?J?mol?1?K?1) were calculated, showing that the interaction between HE–Eu(III) complex and hsDNA was driven mainly by entropy. The value of K indicated that the binding mode of HE–Eu(III) complex with DNA was not classical intercalation. These results were further supported by viscosity method and competitive binding experiment. Scatchard analysis suggests that the interaction mode was a mixed binding, which contains partial intercalation and groove binding.  相似文献   

9.
The complex (C11H18NO)2CuCl4 (s), which may be a potential effective drug, was synthesized. X‐ray crystallography, elemental analysis, and chemical analysis were used to characterize the structure and composition of the complex. Lattice energy and ionic radius of the anion of the complex were derived from the crystal data of the title compound. In addition, a reasonable thermochemical cycle was designed, and standard molar enthalpies of dissolution for reactants and products of the synthesis reaction of the complex were measured by an isoperibol solution‐reaction calorimeter. The enthalpy change of the reaction was calculated to be ΔrH?m=(2.69±0.02) kJ·mol?1 from the data of the above standard molar enthalpies of dissolution. Finally, the standard molar enthalpy of formation of the title compound was determined to be ΔrH?m[(C11 H18NO)2CuCl4, s]= ? (1822.96±6.80) kJ·mol?1 in accordance with Hess law.  相似文献   

10.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

11.
The kinetics of base hydrolysis of (αβ S)-(o -methoxy benzoato) (tetraethylenepentamine)cobalt(III) obeyed the rate law: kobs = kOH[OH?], in the range 0.05 ? [OH?]T, mol dm?3 ? 1.0, I = 1.0 mol dm?3, and 20.0–40.0°C. At 25°C, kOH = 13.4 ± 0.4 dm3 mol?1 s?1, ΔH = 93 ± 2 kJ mol?1 and ΔS = 90 ± 5 JK?1 mol?1. Several anions of varying charge and basicity, CH3CO2?, SO32?, SO42?, CO32?, C2O42?, CH2(CO2)22?, PO43?, and citrate3? had no effect on the rate while phthalate2?, NTA3?, EDTA4?, and DTPA5? accelerated the process via formation of the reactive ion pairs. The anionic (SDS), cationic (CTAB), and neutral (Triton X-100) micelles, however, retarded the reaction, the effect being in the order SDS> CTAB > Triton X-100. The importance of electrostatic and hydrophobic effects of the micelles on the selective partitioning of the reactants between the micellar and bulk aqueous pseudo-phases which control the rate are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
A new copper(II) complex [Cu(adefovir)2Cl2], where adefovir = adefovir dipivoxil drug, was synthesized and characterized by using different physicochemical methods. Binding interaction of this complex with calf thymus DNA (ct-DNA) has been investigated by multi-spectroscopic techniques and molecular modeling study. The complex displays significant binding properties of ct-DNA. The results of fluorescence and UV–vis absorption spectroscopy indicated that, this complex interacted with ct-DNA in a groove-binding mode, and the binding constant was 4.3(±0.2) × 104 M?1. The fluorimeteric studies showed that the reaction between the complex and ct-DNA is exothermic (ΔH = 73.91 kJ M?1; ΔS = 357.83 J M?1 K?1). Furthermore, the complex induces detectable changes in the CD spectrum of ct-DNA and slightly increases its viscosity which verified the groove-binding mode. The molecular modeling results illustrated that the complex strongly binds to the groove of DNA by relative binding energy of the docked structure ?5.74 kcal M?1. All experimental and molecular modeling results showed that the Cu(II) complex binds to DNA by a groove-binding mode.  相似文献   

13.
The kinetics of the interaction of adenosine with cis‐[Pt(cis‐dach)(OH2)2]2+ (dach = diaminocyclohexane) was studied spectrophotometrically as a function of [cis‐[Pt(cis‐dach)(OH2)2]2+], [adenosine], and temperature at a particular pH (4.0), where the substrate complex exists predominantly as the diaqua species and the ligand adenosine exists as a neutral molecule. The substitution reaction shows two consecutive steps: the first is the ligand‐assisted anation followed by a chelation step. The activation parameters for both the steps have been evaluated using Eyring equation. The low negative value of ΔH1 (43.1 ± 1.3 kJ mol?1) and the large negative value of ΔS1 (?177 ± 4 J K?1 mol?1) along with ΔH2 (47.9 ± 1.8 kJ mol?1) and ΔS2 (?181 ± 6 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. The kinetic study was substantiated by infrared and electrospray ionization mass spectroscopic analysis. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 219–229, 2011  相似文献   

14.
The surface segregation of In and S from a dilute Cu(In,S) ternary alloy were measured using Auger electron spectroscopy coupled with a linear programmed heater. The alloy was linearly heated and cooled at constant rates. Segregation data of a linear heat run showed surface segregation of In that reached a maximum surface coverage of 25% followed by S, which reached a coverage of 30%. It was found that after In had reached a maximum surface coverage, it started to desegregate as soon as the S enriched the surface until In was completely replaced by S. The segregation parameters, namely, the pre‐exponential factor (D0), activation energy (Q), segregation energy (ΔG?) and interaction energy (Ω) were extracted from the measured segregation data for both In and S segregation in Cu by simulating the measured segregation data with a theoretical segregation model (modified Darken model). The segregation parameters obtained for In segregation in Cu are D0 = 1.8 ± 0.5 × 10?5 m2 s?1, Q = 184.3 ± 1.0 kJ.mol?1, ΔG? = ?61.4 ± 1.4 kJ.mol‐1, ΩCu?In = 3.0 ± 0.4 kJ.mol?1; for S segregation in Cu the parameters are D0 = 8.9 ± 0.5 × 10?3 m2 s?1, Q = 212.8 ± 3.0 kJ.mol?1, ΔG? = ?120.0 ± 3.5 kJ.mol?1, ΩCu?S = 23.0 ± 2.0 kJ mol?1 and the In and S interaction parameter is ΩIn?S = ?4.0 ± 0.5 kJ.mol?1. The initial parameters used for the Darken calculations were extracted from fits performed with the Fick's and Guttmann model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The kinetics of decomposition of [Alg · Mn VIO42?] intermediate complex have been investigated spectrophotometrically at a constant ionic strength of 0.5 mol dm?3. The decomposition reaction was found to be first-order in the intermediate concentration. The results showed that the rate of reaction was base-catalyzed. The kinetic parameters have been evaluated and found to be ΔS? = ?103.88±6.18 J mol?1 K?1, ΔH? = 51.61 ± 1.02 kJ mol?1, and ΔG? = 82.57 ± 2.86 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
A new cobalt(II) complex, [Co(C3H4N2)(C8H8O5)(H2O)2]·2H2O, of demethylcantharate(7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) with imidazole has been synthesized from cobalt chloride, demethylcantharidin (NCTD) and imidazole. The complex was characterized by elemental analysis, IR, and X-ray single crystal diffraction. The complex crystallized in the monoclinic crystal system and P21/m space group with a?=?0.634790(10)?nm, b?=?0.963030(10)?nm, c?=?1.221770(10)?nm, α?=?90°, β?=?95.9700(10)°, γ?=?90°, V?=?0.742844(15)?nm3, Mr ?=?383.22, Dc ?=?1.713?g?cm?3, Z?=?2, F(0?0?0)?=?398, μ?=?1.206?mm?1, the final R?=?0.0291, and wR?=?0.0837 [I?>?2σ(I?)]. The interaction of the complex with deoxyribonucleic acid (DNA) was studied by electronic absorption spectra, fluorescence spectra, and viscosity measurements, which indicate that the complex binds to calf thymus DNA through a partially intercalative mode. The binding constant K b for the complex was 2.62?×?104?L?mol?1. The antiproliferation activity test showed that the complex has high antiproliferative ability against human hepatoma cells SMMC7721 (with IC50 being 42.8?±?0.9?µmol?L?1) and human lung cancer cells A549 (with IC50 being 65.1?±?3.2?µmol?L?1). The inhibition rates of the complex are much higher than those of NCTD.  相似文献   

17.
Calorimetric measurements of the enthalpy of reaction of WO3(c) with excess OH?(aq) have been made at 85°C. Similar measurements have been made with MoO3(c) at both 85 and 25°C, to permit estimation of ΔH°=?13.4 kcal mol?1 for the reaction WO3(c)+2OH?(aq)=WO2?4(aq)+H2O(liq) at 25°C. Combination of this ΔH° with ΔH°f for WO3(c) leads to ΔH°f=?256.5 kcal mol?1 for WO2?4(aq). We also obtain ΔH°f=?269.5 kcal mol?1 for H2WO4(c). Both of these values are discussed in relation to several earlier investigations.  相似文献   

18.
[CrIII(LD)(Urd)(H2O)4](NO3)2?·?3H2O (LD?=?Levodopa; Urd?=?uridine) was prepared and characterized. The product of the oxidation reaction was examined using HPLC. Kinetics of the oxidation of [CrIII(LD)(Urd)(H2O)4]2+ with N-bromosuccinimide (NBS) in an aqueous solution was studied spectrophotometrically, with 1.0–5.0?×?10?4?mol?dm?3 complex, 0.5–5.0?×?10?2?mol?dm?3 NBS, 0.2–0.3?mol?dm?3 ionic strength (I), and 30–50°C. The reaction is first order with respect to [CrIII] and [NBS], decreases as pH increases in the range 5.46–6.54 and increases with the addition of sodium dodecyl sulfate (SDS, 0.0–1.0?×?10?3?mol?dm?3). Activation parameters including enthalpy, ΔH*, and entropy, ΔS*, were calculated. The experimental rate law is consistent with a mechanism in which the protonated species is more reactive than its conjugate base. It is assumed that the two-step one-electron transfer takes place via an inner-sphere mechanism. A mechanism for this reaction is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* for some CrIII complexes. Formation of [CrIII(LD)(Urd)(H2O)4]2+ in vivo probably occurs with patients who administer the anti-Parkinson drug (Levodopa), since CrIII is a natural food element. This work provides an opportunity to identify the nature of such interactions in vivo similar to that in vitro.  相似文献   

19.
Introduction A series of lanthanide sulfide complexes have beenlargely used for ceramics and thin film materials1 andthese complexes could be prepared from the precursorswhich are the compounds containing lanthanide-sulfurbonds.2-4 For instance, the compounds synthesized with[(alkyl)2dtc]-, phen?H2O and lanthanide salts were usedas the volatile precursors for preparing lanthanide sul-fide, its friction properties in lubricant was investigatedin literature 5 and the preparation and propertie…  相似文献   

20.
The kinetics of decomposition of an [Pect·MnVIO42?] intermediate complex have been investigated spectrophotometrically at various temperatures of 15–30°C and a constant ionic strength of 0.1 mol dm?3. The decomposition reaction was found to be first‐order in the intermediate concentration. The results showed that the rate of reaction was base‐catalyzed. The kinetic parameters have been evaluated and found to be ΔS = ? 190.06 ± 9.84 J mol?1 K?1, ΔH = 19.75 ± 0.57 kJ mol?1, and ΔG = 76.39 ± 3.50 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67–72, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号