首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
A new platinum(II) complex with deoxyalliin was synthesized and characterized by chemical and spectroscopic techniques. Elemental and mass spectrometry analyses of the solid complex fit to the composition [Pt(C6H11NO2S)Cl2]·H2O. 13C NMR, 15N NMR and infrared spectra of the complex are consistent with coordination of deoxyalliin to Pt(II) through the nitrogen and sulfur atoms forming a square-planar geometry. The complex is soluble in dimethylsulfoxide. Biological analysis for evaluation of a potential cytotoxic effect of the complex was performed using HeLa cells, a human cervix adenocarcinoma-derived cell line. The results were compared with those of a palladium(II) complex previously described.  相似文献   

2.
Synthesis and characterization of a new Pt(II)–mimosine complex are described. Elemental, mass spectrometry and thermal analyses for the complex are consistent with the formula [PtCl2(C8H10N2O4)]·1.5H2O. 13C NMR, 15N NMR and infrared spectroscopy indicate coordination of the ligand to Pt(II) through the N and O atoms in a square-planar geometry. The final residue after thermal treatment was identified as metallic Pt. The complex is soluble in dimethylsulfoxide.  相似文献   

3.
A new platinum(II) complex with methionine sulfoxide was synthesized and characterized by chemical and spectroscopic techniques. Elemental analyses, mass spectrometric measurements (electrospray ionization quadrupole time-of-flight mass spectrometry), and thermal analyses of the solid compound fit the composition [(C5H10NO3S)Pt(µ-Cl)2Pt(C5H10NO3S)]?·?2.5H2O. Infrared spectroscopic data indicate coordination of the ligand to Pt(II) through the nitrogen of NH2 and the sulfur of the S=O group. 1H-15N nuclear magnetic resonance spectroscopic data confirm nitrogen coordination. Antibacterial activities were evaluated by antibiogram assays using the disc diffusion method. The platinum(II) complex showed antibacterial activity against Gram-negative Pseudomonas aeruginosa bacterial cells.  相似文献   

4.
The title complex, [PtCl2(C6H7NO)(C2H6OS)], exhibits square‐planar geometry. The plane of the pyridine ring makes a dihedral angle of 67.2 (3)° with the square plane of the metal center. The S—O bond is nearly aligned with the adjacent Pt—N bond, leaving the methyl groups of the di­methyl sulfoxide ligand to stagger the Pt—Cl bond.  相似文献   

5.
Complexes of the type [Pt R2 (dppma-PP′)] (R─Me, Et, Ph, CH2Ph, C6H4 Me-p, C6H4OMe-2, CH2CMe3, 1-naphthyl, C6H4Me-o, dppma = Ph2PNMe PPh2) have been prepared from [PtCl2, (dppma-PP′)] and the corresponding alkyl-lithium or Grignard reagents. Equilibrium constants, k, for the conversion of [PtR2 (dppma-PP′)] into cis-[PtR2(dppma-P)2] with dppma were studied using 31P NMR spectroscopy at room temperature. Equilibrium is rapidly established for R─C6H4-Me-o, at 20°C. Complex of the type cis-[PtR2 (dppma-P)2] was isolated R─C6H4 Me-o. The complexes [PtMe2(dppma-P)2] and [Pt(o-methoxyphenyl)2(dppma-P)2] were prepared, but unfortunately decomposed once isolated, the only evidence for its formation being from 31P-{1H} NMZR spectroscopy. The o-tolyl or 1-naphthyl complexes exist as syn-anti mixtures in solution, due to restricted rotation around the platinum aryl bonds. Treatment of several complexes of the type [PtR2(dppma-PP′)] with MeI gives [PtR2Me(I)(dppma-PP′)] with trans addition of MeI. Treatment of [PtR2(dppma-PP′)] with HCl gives [Pt Cl (R) (dppma-PP′)] for R─C6H2Me3-2,4,6, C6H4-CH3-2, C6H4-Me-4, Me, 1-naphthyl. The 1H, 31P NMR parameters for these complexes are discussed. Attempted preparation of complexes of the type [PtR2 (dppma-P)2M] (R─C6H4-Me-2, Me CN-C6H4-Me-4); M─Pd, Pt, Au,) are reported.  相似文献   

6.
Preparation, Spectroscopic Characterization, and Crystal Structures of [(C5H5N)2CH2][PtCl5(SCN)] and cis -[(C5H5N)2CH2][PtCl4(SCN)2] By treatment of [PtCl6]2– with SCN in aqueous solution a mixture of chlorothiocyanatoplatinates(IV) is formed, from which [PtCl5(SCN)]2– and cis-[PtCl4(SCN)2]2– have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-Ray structure determinations on single crystals of [(C5H5N)2CH2][PtCl5(SCN)] ( 1 ) (tetragonal, space group P 43, a = 7.687(1), c = 29.698(4), Z = 4) and cis-[(C5H5N)2CH2][PtCl4(SCN)2] ( 2 ) (monoclinic, space group P 21/n, a = 11.2467(9), b = 15.0445(10), c = 11.3179(13), β = 92.840(9)°, Z = 4) show, that the thiocyanate groups are coordinated via S atoms with average Pt–S distances of 2.339 Å and Pt–S–C angles of 104.7° up to 107.1°. Using the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra have been assigned by normal coordinate analyses. The valence force constants of the S–Pt–Cl˙ axes are fd(PtS) = 1.81 ( 1 ) and 1.87 ( 2 ), fd(PtCl × ) = 1.77 ( 1 ) and 1.81 ( 2 ), of the Cl–Pt–Cl axes are fd(PtCl) = 1.93 ( 1 ) and 1.90 mdyn/Å ( 2 ). The 195Pt NMR spectra from dichlormethane solutions exhibit each one sharp signal at 3975.6 ( 1 ) and 3231.6 ppm ( 2 ), respectively.  相似文献   

7.
Chemical and spectroscopic studies of a new palladium(II) N-acetyl-L-cysteine complex are described. Elemental analyses for the solid complex are consistent with the formula [Pd(C5H8NO3S)2]?·?H2O or [Pd(NAC)2]?·?H2O. Solid-state 13C nuclear magnetic resonance (NMR), UV–Visible (UV–Vis) and infrared (IR) spectroscopic analyses are consistent with coordination of the ligand to palladium(II) through the nitrogen and sulfur atoms in a square-planar geometry. Thermogravimetric and differential thermal analyses confirmed the composition; final residue was identified as metallic palladium.  相似文献   

8.
The reaction of mercury(II) chloride with neutral phosphine telluride ligands (R3PTe) produced new mercury(II) complexes, HgCl2(R3PTe)2 [R = Me2N (1), Et2N (2), C4H8N (3), C5H10N (4) or n-Bu (5)]. Attempts to isolate the complex of HgCl2 with the morpholinyl ligand, (OC4H8N)3PTe, were unsuccessful. Complexes 15 have been characterized by elemental analyses, IR, and multinuclear (31P, 125Te, and 199Hg) NMR spectroscopy. The solution behavior of the complexes was investigated using variable temperature NMR spectroscopy in the presence of excess ligand and indicated fast ligand exchange on the NMR timescale at room temperature. The metal–ligand exchange barriers in these complexes were estimated to be in the range 8–11 kcal/mol. The results suggest that a slight change in the nature of the substituents on the phosphorus of the ligand can contribute considerably to the lability of the complex obtained. The NMR data are discussed and compared with those obtained for related phosphine chalcogenide systems.  相似文献   

9.
The coordination chemistry of platinum(II) with a series of thiosemicarbazones {R(H)C2=N3‐N2(H)‐C1(=S)‐N1H2, R = 2‐hydroxyphenyl, H2stsc; pyrrole, H2ptsc; phenyl, Hbtsc} is described. Reactions of trans‐PtCl2(PPh3)2 precursor with H2stsc (or H2ptsc) in 1 : 1 molar ratio in the presence of Et3N base yielded complexes, [Pt(η3‐ O, N3, S‐stsc)(PPh3)] ( 1 ) and [Pt(η3‐ N4, N3, S‐ptsc)(PPh3)] ( 2 ), respectively. Further, trans‐PtCl2(PPh3)2 and Hbtsc in 1 : 2 (M : L) molar ratio yielded a different compound, [Pt(η2‐ N3, S‐btsc)(η1‐S‐btsc)(PPh3)] ( 3 ). Complex 1 involved deprotonation of hydrazinic (‐N2H‐) and hydroxyl (‐OH) groups, and stsc2? is coordinating via O, N3, S donor atoms, while complex 2 involved deprotonation of hydrazinic (‐N2H‐) and ‐N4H groups and ptsc2? is probably coordinating via N4, N3, S donor atoms. Reaction of PdCl2(PPh3)2 with Hbtsc‐Me {C6H5(CH3)C2=N3‐N2(H)‐C1(=S)‐N1H2} yielded a cyclometallated complex [Pd(η3‐C, N3, S‐btsc‐Me)(PPh3)] ( 4 ). These complexes have been characterized with the help of analytical data, spectroscopic techniques {IR, NMR (1H, 31P), U.V} and single crystal X‐ray crystallography ( 1 , 3 and 4 ). The effects of substituents at C2 carbon of thiosemicarbazones on their dentacy and cyclometallation are emphasized.  相似文献   

10.
Pulsed gradient spin‐echo (PGSE) diffusion characteristics for a) the new [brucinium][X] salts 6 a – f [ a : X=BF4?; b : X=PF6?; c : X=MeSO3?, d : X=CF3SO3?; e : X=BArF?; f : X=PtCl3(C2H4)?], b) 4‐tert‐butyl‐N‐benzyl analogue, 7 and c) the aryl carbocations (p‐R‐C6H4)2CH 9 a (R=CH3O) and 9 b (R=(CH3)2N), (p‐CH3O‐C6H4)xCPh3?x+ 10 a – c (x=1–3, respectively) and (p‐R‐C6H4)3C+ 11 (R=(CH3)2N) and 12 (R=H) all in several different solvents, are reported. The solvent dependence suggests strong ion pairing in CDCl3, intermediate ion pairing in CD2Cl2 and little ion pairing in [D6]acetone. 1H, 19F HOESY NMR spectra (HOESY: heteronuclear Overhauser effect spectroscopy) for 6 and 7 reveal a specific approach of the anion with respect to the brucinium cation plus subtle changes, which are related to the anion itself. Further, for carbocations 9 – 12 , (all as BF4? salts) based on the NOE results, one finds marked changes in the relative positions of the BF4? anion. In these aryl cationic species the anion can be located either a) very close to the carbonium ion carbon b) in an intermediate position or c) proximate to the N or O atom of the p‐substituent and remote from the formally positive C atom. This represents the first example of such a positional dependence of an anion on the structure of the carbocation. DFT calculations support the experimental HOESY results. The solid‐state structures for 6 c and the novel Zeise's salt derivative, [brucinium][PtCl3(C2H4)], 6 f , are reported. Analysis of 195Pt NMR and other NMR measurements suggest that the η2‐C2H4 bonding to the platinum centre in 6 f is very similar to that found in K[PtCl3(C2H4)]. Field dependent T1 measurements on [brucinium][PtCl3(C2H4)] and K[PtCl3(C2H4)], are reported and suggested to be useful in recognizing aggregation effects.  相似文献   

11.
The crystal structure of K[PtCl3(caffeine)] was determined. The coordination geometry around platinum is square-planar formed by N9 of the caffeine ligand and three Cl? ions. The bond lengths and angles of K[PtCl3(caffeine)] were compared with those reported for [PtCl3(caffeine)]? and K[PtCl3(theobromine)]. At the level of the statistical significance of the data we have compared, no differences in the bond distances and angles for any of these compounds were noticed. Weak interactions between K+ and Cl? are responsible for the formation of 1-D polymeric chains in the crystal structure of the complex. The interactions of K[PtCl3(caffeine)] with inosine (Ino) and guanosine-5′-monophosphate (5′-GMP) were studied by 1H NMR spectroscopy at 295 K in D2O in a molar ratio of 1 : 1. The results indicate formation of the reaction product [PtCl3(Nu)] (Nu=Ino or 5′-GMP) with the release of caffeine from the coordination sphere of the starting complex. The higher stability of the bond between the Pt(II) ion and Ino or 5′-GMP compared to the stability of the platinum–caffeine bond is confirmed by density functional theory calculations (B3LYP/LANL2DZp) using as models 9-methylhypoxanthine and 9-methylguanine.  相似文献   

12.
Synthesis and Characterization of Aquapentachloroplatinates(IV) – Structure of [K(18-crown-6)][PtCl5(H2O)] The crown ether complex of the aquapentachloroplatinic acid of the composition [H13O6][PtCl5(H4O2)] · 2(18-cr-6) ( 2 ) reacts with K2CO3 and [NnBu4]OH in aqueous solution to give [K(18-cr-6)][PtCl5(H2O)] ( 5 a ) and [NnBu4][PtCl5(H2O)] · 1/2 (18-cr-6) · H2O ( 5 b ), respectively. Both compounds were characterized by microanalysis, vibrational (IR, Raman) and NMR (1H, 13C, 195Pt) spectroscopy. The X-ray structure analysis of 5 a (orthorhombic, pnma; a = 16,550(4), b = 18,044(3), c = 7,415(1) Å; Z = 4; R1 = 0,0183; wR2 = 0,0414) reveals that the crystal is threaded by chains built up of [PtCl5(H2O)]? and [K(18-cr-6)]+ units. There are tight K …? Cl contacts (d(K? Cl1)) = 3,0881(9) Å and OW? H? Ocr hydrogen bridges (d(O1 …? O2) = 2,806(3) Å) between these units. The coordination polyhedron [PtCl5O] has approximately C4v symmetry.  相似文献   

13.
New cadmium(II) complexes with phosphine telluride ligands of the type CdX2(R3PTe)n [X?=?ClO4?, n?=?4: R?=?n-Bu (1), Me2?N (2), C5H10?N (3), C4H8?N (4) or OC4H8?N (5); X?=?Cl, n?=?2: R?=?n-Bu (6), Me2?N (7), C5H10?N (8), C4H8?N (9) or OC4H8?N (10)] have been synthesized and characterized by elemental analyses, IR and multinuclear (31P, 125Te, and 113Cd) NMR spectroscopy. In particular, the solution structures of these complexes were confirmed by 113Cd NMR at low temperature, which displays a quintuplet for each of the perchlorate complexes and a triplet for each of the chloride complexes due to coupling with four and two equivalent phosphorus atoms, respectively, indicating a four-coordinate tetrahedral geometry for the metal center. These multiplet features were further accompanied by one bond Te–Cd couplings, clearly showing that the ligand is coordinated to the metal through tellurium. The results are discussed and compared with those obtained for closely related phosphine chalcogenide analogs.  相似文献   

14.
The 195Pt-NMR chemical shifts of all possible hydrolysis products of [PtCl6]2? in acidic and alkaline aqueous solutions are calculated employing simple non-relativistic density functional theory computational protocols. Particularly, the GIAO-PBE0/SARC-ZORA(Pt) ∪ 6-31 + G(d)(E) computational protocol augmented with the universal continuum solvation model (SMD) performs the best for calculation of the 195Pt-NMR chemical shifts of the Pt(IV) complexes existing in acidic and alkaline aqueous solutions of [PtCl6]2?. Excellent linear plots of δcalcd(195Pt) chemical shifts versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Very small changes in the Pt–Cl and Pt–O bond distances of the octahedral [PtCl6]2?, [Pt(OH)6]2?, and [Pt(OH2)6]4+ complexes have significant influence on the computed σiso 195Pt magnetic shielding tensor elements of the anionic [PtCl6]2? and the computed δ 195Pt chemical shifts of [Pt(OH)6]2? and [Pt(OH2)6]4+. An increase of the Pt–Cl and Pt–O bond distances by 0.001 Å (1 mÅ) is accompanied by a downfield shift increment of 17.0, 19.4, and 37.6 ppm mÅ?1, respectively. Counter-anion effects in the case of the highly positive charged complexes drastically improve the accuracy of the calculated 195Pt chemical shifts providing values very close to the experimental ones.  相似文献   

15.
The crystal structure of cis-[PtCl2(C6H15As)2], (I), is isostructural with a previously reported structure of cis-[PtCl2(C6H15P)2], (II). A new polymorph of (II) is also reported here. Selected geometrical parameters in the arsine complex are Pt—Cl 2.3412 (12) and 2.3498 (13), Pt—As 2.3563 (6) and 2.3630 (6) Å, Cl—Pt—Cl 88.74 (5), As—Pt—As 97.85 (2), and Cl—Pt—As 171.37 (4) and 177.45 (4)°. Corresponding parameters in the phosphine complex are Pt—Cl 2.364 (2) and 2.374 (2), Pt—P 2.264 (2) and 2.262 (2) Å, Cl—Pt—Cl 85.66 (9), P—Pt—P 98.39 (7), and Cl—Pt—P 170.26 (7) and 176.82 (8)°.  相似文献   

16.
The crystal structures of cis‐dichlorido(ethylamine‐κN)(piperidine‐κN)platinum(II), [PtCl2(C2H7N)(C5H11N)], (I), cis‐dichlorido(3‐methoxyaniline‐κN)(piperidine‐κN)platinum(II), [PtCl2(C5H11N)(C7H9NO)], (II), and cis‐dichlorido(piperidine‐κN)(quinoline‐κN)platinum(II), [PtCl2(C5H11N)(C9H7N)], (III), have been determined at 100 K in order to verify the influence of the nonpiperidine ligand on the geometry and crystal packing. The crystal packing is characterized by N—H...Cl hydrogen bonding, resulting in the formation of chains of molecules connected in a head‐to‐tail fashion. Hydrogen‐bonding interactions play a major role in the packing of (I), where the chains further aggregate into planes, but less so in the case of (II) and (III), where π–π stacking interactions are of greater importance.  相似文献   

17.
In the novel title binuclear zinc(II) Schiff base complex, bis­(μ‐11‐thio­semicarbazonoindeno[1,2‐b]quinoxaline‐8‐carboxylato)bis­[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide tri­solvate, [Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS, each ZnII atom is five‐coordinated and situated in a distorted square‐pyramidal environment, coordinated by two L2− ligands and one dimethyl sulfoxide mol­ecule. Each L2− ligand, which coordinates to two ZnII atoms, has two parts. One part, acting in a tridentate chelating mode, coordinates to one ZnII atom through two N atoms and one S atom, while another part coordinates to another ZnII atom through a monodentate carboxylate group. The whole complex has a dimeric structure. The coordination mode of the nearly planar L2− ligand is quite different from the most common mode for Schiff bases.  相似文献   

18.
Abstract

Substitution reactions of the complex [Pt(dien)H2O]2+ (where dien = diethylentriamine or 1,5-diamino-3-azapentane) with sulfur-containing L-cystine have been studied in a 1.0 × 10?1 mol dm?3 aqueous perchlorate medium at various temperatures (298–323 K) and 4.45 ≤ pH ≤ 2.15 using UV-vis spectroscopy. The products obtained have been characterized by their infrared and 1H NMR datasets at various pH levels and temperatures. From infrared and 1H NMR data, products have indicated that [Pt(dien)H2O]2+ reacted with L-cystine forming a Pt–S bond at low pH. At high pH, a product complex through the Pt–N bond has been formed. All rate constants have been evaluated from nonlinear double exponential plots. The activation parameters ΔH# and ΔS# have been determined using the Eyring equation. The products, SNi, and reversible rate constants have been evaluated.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

GRAPHICAL ABSTRACT   相似文献   

19.
A new series of platinum(II) complexes based on thione ligands with general formula [Pt(thione)4]X2 (X??=?Cl?, NO3?) has been synthesized and characterized using CHNS elemental analysis, infrared, 1H and 13C solution-state NMR as well as 13C and 15N solid-state NMR spectroscopy, and X-ray crystallography. The spectroscopic methods confirm the coordination of Pt(II) with thiocarbonyl groups via sulfur of the thione ligands. The X-ray structures showed a distorted square planar geometry for 1, [Pt(MeImt)4]Cl2 (MeImt = N-Methylimidazolidine-2-thione) while the hydrogen bonding interactions in 7, [Pt(iPrImt)4](NO3)2·0.6(H2O) induce a bent see-saw distortion relative to the ideal square planar geometry. The in vitro cytotoxicity studies showed that 2, [Pt(EtImt)4]Cl2 is generally the most effective, a two-fold better cytotoxic agent than cisplatin and carboplatin against MCF7 (human breast cancer).  相似文献   

20.
The reaction of [PtCl2(COD)] (COD=1,5-cyclooctadiene) with diisopropyl-2-(3-methyl)indolylphosphine (iPr2P(C9H8N)) led to the formation of the platinum(ii ) chlorido complexes, cis-[PtCl2{iPr2P(C9H8N)}2] ( 1 ) and trans-[PtCl2{iPr2P(C9H8N)}2] ( 2 ). The cis-complex 1 reacted with NEt3 yielding the complex cis-[PtCl{κ2-(P,N)-iPr2P(C9H7N)}{iPr2P(C9H8N)}] ( 3 ) bearing a cyclometalated κ2-(P,N)-phosphine ligand, while the isomer 2 with a trans-configuration did not show any reactivity towards NEt3. Treatment of 1 or 3 with (CH3)4NF (TMAF) resulted in the formation of the twofold cyclometalated complex cis-[Pt{κ2-(P,N)-iPr2P(C9H7N)}2] ( 4 ). The molecular structures of the complexes 1–4 were determined by single-crystal X-ray diffraction. The fluorido complex cis-[PtF{κ2-(P,N)-iPr2P(C9H7N)}{iPr2P(C9H8N)}] ⋅ (HF)4 ( 5 ⋅ (HF)4) was formed when complex 4 was treated with different hydrogen fluoride sources. The Pt(ii ) fluorido complex 5 ⋅ (HF)4 exhibits intramolecular hydrogen bonding in its outer coordination sphere between the fluorido ligand and the NH group of the 3-methylindolyl moiety. In contrast to its chlorido analogue 3 , complex 5 ⋅ (HF)4 reacted with CO or the ynamide 1-(2-phenylethynyl)-2-pyrrolidinone to yield the complexes trans-[Pt(CO){κ2-(P,C)-iPr2P(C9H7NCO)}{iPr2P(C9H8N)}][F(HF)4] ( 7 ) and a complex, which we suggest to be cis-[Pt{C=C(Ph)OCN(C3H6)}{κ2-(P,N)-iPr2P(C9H7N)}{iPr2P(C9H8N)}][F(HF)4] ( 9 ), respectively. The structure of 9 was assigned on the basis of DFT calculations as well as NMR and IR data. Hydrogen bonding of HF and NH to fluoride was proven to be crucial for the existence of 7 and 9 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号