首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The DNA cleavage activities of two coordination polymers of Robson-type macrocycles, {[Cu4L1(4,4′-bipy)2](ClO4)4·H2O} (1) and {[Cu4L2(4,4′-bipy)4](ClO4)4·2CH3CN·2H2O} (2) (where H2L1 and H2L2 are the [2 + 2] condensation products of 1,3-diaminopropane with 2,6-diformyl-4-methylphenol and 2,6-diformyl-4-fluorophenol, respectively), have been studied. The interactions of the complexes with calf thymus-DNA were investigated by UV–vis spectroscopy, CD spectroscopy, and gel electrophoresis. The binding constants of 1 and 2 are 7.2 × 104 and 2.1 × 105 M?1, respectively. The complexes exhibit DNA cleavage activity, with the cleavage process involving oxidative cleavage of DNA.  相似文献   

2.
Two new ZnII complexes, {[Zn(L)(phen)(H2O)]?·?H2O} (1) and {[Zn(L)(4bpy)(H2O)]?·?H2O} (2) (L?=?5,6-dihydro-1,4-dithiin-2,3-dicarboxylate, phen?=?1,10-phenanthroline, and 4bpy?=?4,4′-bipyridine), have been prepared by in situ reaction of Zn(ClO4)2?·?6H2O with 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydrate in the presence of lithium hydroxide, together with incorporating chelating phen or bridging 4bpy as co-ligands. Their structures were determined by single-crystal X-ray diffraction. Complex 1 takes a 1-D helical structure that is further assembled into a 2-D network by O–H?···?O, C–H?···?O hydrogen bonds, and weak S?···?S interactions, and then an overall 3-D supramolecular framework was formed by π?···?π stacking interactions. Complex 2 possesses a 2-D (4,4)-layered structure. The structural difference between 1 and 2 can be attributed to the different N-donor auxiliary co-ligands. Both 1 and 2 are photoluminescent materials whose emission properties are closely related to their intrinsic structure.  相似文献   

3.
Three new coordination polymers, {[Cu(trza)(2,2′-bipy)(H2O)]?·?(ClO4)} n (1), {[Cu(trza)(2,2′-bipy)(H2O)]?·?(BF4)} n (2), and {[Cu(trza)(4,4′-bipy)]?·?(H2O)?·?(ClO4)} n (3) (Htrza?=?2-(1H-1,2,4-triazole)-1-acetic acid), have been synthesized and characterized by single-crystal X-ray diffraction analysis. Both 1 and 2 exhibit 1-D chain structure while 3 displays 2-D layer structure. The catalytic activities of 1 and 3 in the green oxidative coupling of 2,6-dimethylphenol have been investigated.  相似文献   

4.
合成了2个新的Robson大环配位聚合物{[Mn2L1(1,4-bix)2](ClO4)2·5H2O·DMF}n(1)和{[Cu2L2(1,4-bix)](ClO4)2}n(2)(H2L1和H2L2分别为1,3-丙二胺与2,6-二甲酰基-4-氟苯酚和2,6-二甲酰基-4-氯苯酚通过[2+2]缩合的产物)。2个配合物通过1,4-二(1,2,4-三唑-1-甲基)苯(1,4-bix)桥连大环单元形成一维链状结构。配合物的HOMO-LUMO能带间隙通过循环伏安法、紫外-可见漫反射光谱进行了测定,结果表明有较低的能带间隙。  相似文献   

5.
Two pairs of isostructural transition metal coordination polymers, {[Co(L)(H2O)]n} (1) and {[Zn(L)(H2O)]n} (3), {[Co(L)(4,4′-bipy)(H2O)]·H2O}n (2) and {[Zn(L)(4,4′-bipy)(H2O)]·H2O}n (4) (H2L = N-pyrazinesulfonyl-glycine acid and 4,4′-bipy = 4,4′-bipyridine), have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental and thermogravimetric analyses. The structures show that 1 and 3 display 2-D polymeric grid frameworks with a 3-connected (4, 82) topology. 2 and 4 also exhibit a 2-D polymeric grid structure, but are constructed by a 4-connected (4, 4) topology. The adjacent 2-D polymeric grid frameworks for 1–4 are further linked by hydrogen bonding O–H?O interactions to form 3-D supramolecular interweaved orderly networks. The fluorescent properties of 3 and 4 were investigated in the solid state.  相似文献   

6.
合成了2个新的Robson大环配位聚合物{[Mn2L1(1,4-bix)2](ClO42·5H2O·DMF}n1)和{[Cu2L2(1,4-bix)](ClO42}n2)(H2L1和H2L2分别为1,3-丙二胺与2,6-二甲酰基-4-氟苯酚和2,6-二甲酰基-4-氯苯酚通过[2+2]缩合的产物)。2个配合物通过1,4-二(1,2,4-三唑-1-甲基)苯(1,4-bix)桥连大环单元形成一维链状结构。配合物的HOMO-LUMO能带间隙通过循环伏安法、紫外-可见漫反射光谱进行了测定,结果表明有较低的能带间隙。  相似文献   

7.
Two new dinuclear macrocyclic complexes, [Ni2L1(OAc)]·ClO4 (1) and [Co2L2(OAc)]·1.5(ClO4)·0.5Na·2(CH3OH) (2) (where H2L1 and H2L2 are the condensation products of N,N-bis(3-aminopropyl)-4-methoxybenzylamine with 2,6-diformyl-4-brominephenol and 2,6-diformyl-4-methylphenol in the presence of metal ions, respectively) have been synthesized and characterized by infrared spectra, elemental analysis, electrospray mass spectra, and X-ray single crystal diffraction. The interactions of the complexes with CT-DNA have been measured by UV-absorption titrations and fluorescence quenching experiments.  相似文献   

8.
Abstract

Hydrothermal reaction of Zn(NO3)2 · 6?H2O with 2-carboxyethyl(phenyl)phosphinate (H2L) and 4,4'-bipyridine (4,4′-bipy) led to a novel zinc(II) carboxyphosphinate [ZnL(4,4′-bipy)0.5]n (1). The zinc ion is tetrahedrally coordinated by two phosphinate oxygen atoms, one carboxylate oxygen atom, and one nitrogen atom of 4,4′-bipy ligand. The L2- ligand and zinc ion can be seen as three- and four-connected nodes, respectively. Compound 1 shows a layered network with (3,4)-connected topology. It exhibits a broad blue fluorescent emission band at 459?nm, which can be attributed to 4,4′-bipy intraligand emission as well as to H2L emission. It is a diamagnetic system between 300?K and 11?K.  相似文献   

9.
{[CdCl(2,2′-bipy)2(H2O)]+·[Cd(3-O?-2,7-NDS)(2,2′-bipy)2]?·3H2O} (1) and {[Cd(phen)3]2+·2[Cd(3-O?-2,7-NDS)(phen)2]?·8.5H2O} (2) (3-OH-2,7-NDS?=?3-hydroxy-2,7-naphthalenedisulfonate, phen?=?1,10-phenanthroline, and 2,2′-bipy?=?2,2′-bipydine) were prepared and characterized by X-ray single-crystal diffraction. Compound 1 contains a discrete coordination cation [CdCl(2,2′-bipy)2(H2O)]+ and a coordination anion [Cd(3-O?-2,7-NDS)(2,2′-bipy)2]?; 2 contains a discrete coordination cation [Cd(phen)3]2+ and two coordination anions [Cd(3-O?-2,7-NDS)(phen)2]?. There are numerous weak interactions among the coordination cation, coordination anion, and free water molecules, such as O–H?···?O hydrogen bonds, π?···?π stacking, and Cl??···?π interactions in 1 and π?···?π stacking and C–H?···?π interactions in 2. The cations and anions as building blocks are connected to construct different 3-D supramolecular architectures via weak intermolecular interactions. Particularly, the capsule structure of 1 was observed.  相似文献   

10.
Two new supramolecular compounds [M(4,4′-bipy)2 (H2O)4] ·?(4,4′-bipy)2 ·?(3,5-daba)2 ·?8H2O (M=Zn(1) or Mn(2), 4,4′-bipy =?4,4′-bipyridine, 3,5-daba =?3,5-diaminobenzoic acid anion) were synthesized and characterized by elemental analysis and X-ray crystal diffraction. In [M(4,4′-bipy)2(H2O)4]2+, the M(II) is coordinated by two nitrogen atoms from two 4,4′-bipy molecules and four oxygen atoms from four waters to form an octahedral configuration. There exist uncoordinated 4,4′-bipy molecules, 3,5-diaminobenzolate counterions and water guests in the compounds. The 3D structures of the title supramolecular compounds are constructed by rich hydrogen bonds among [M(4,4′-bipy)2(H2O)4]2+, uncoordinated 4,4′-bipy molecules, water molecules and 3,5-daba, containing a diverting hexa-member water ring.  相似文献   

11.
A series of five new ZnII and CdII mixed‐ligand coordination polymers, namely, {[Zn(L1)(4,4′‐bpy)] · (ClO4) · 2H2O} ( 1 ), {[Zn(L2)(4,4′‐bpy)0.5] · (ClO4)} ( 2 ), {[Zn(L3)(4,4′‐bpy)] · (NO3) · 2H2O} ( 3 ), {[Cd(L4)(4,4′‐bpy)0.5(NO3)] · 5H2O} ( 4 ), and {[Zn(L4)(4,4′‐bpy)] · Cl · H2O} ( 5 ) [4,4′‐bpy = 4,4′‐bipyridine, L1 = 4‐carboxy‐1‐(4‐carboxybenzyl)pyridin‐1‐ium chloride, L2 = 3‐carboxy‐1‐(4‐carboxybenzyl)pyridin‐1‐ium chloride, L3 = 4‐carboxy‐1‐(3‐carboxybenzyl)pyridin‐1‐ium chloride, and L4 = 3‐carboxy‐1‐(3‐carboxybenzyl)pyridin‐1‐ium chloride], were obtained by the reactions of the 4,4′‐bipyridine with four dicarboxylate zwitterionic pyridine ligands. Single‐crystal X‐ray structural analyses reveal that the five complexes demonstrate different molecular frameworks coming from various coordination modes and flexibilities of different dicarboxylate zwitterionic pyridine ligands and central metal atoms. Mononuclear twofold dinuclear 2D twofold interpenetrating net for 2 , four‐coordinate mononuclear twofold interpenetrating 2D layer for 3 , mononuclear 2D layer arranged in parallel and with large grids for 4 , and twofold trans interpenetrating 2D network for compound 5 . The structural diversities in 1 – 5 indicate that the nature of the ligands and the presence of different metal atoms have a great influence on central metal coordination modes and the structural topologies of the metal‐organic molecular architectures. In addition, π ··· π stacking interactions also play important roles in the final crystal packing and supramolecular frameworks. The powder X‐ray diffraction, elemental analysis, and photoluminescence properties of 1 – 5 were studied, which show that architectures play an important role in emission bands and intensities.  相似文献   

12.
A CoII coordination polymer, {[Co(L)(bipy)(H2O)2](H2O)2} (1), with 4-(5-mercapto-1H-tetrazol-1-yl)benzoate (L) and 4,4′-bipyridine (bipy), was synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Complex 1 has a (4,4) 2-D network structure, which is further interlinked by inter-layer O–H ··· O hydrogen-bonding interactions to form a 2-fold interpenetrated binodal (3,5)-connected 3-D hydrogen-bonded (63)(68 · 82) topology. The magnetic properties of 1 feature weak antiferromagnetic coupling.  相似文献   

13.
Two coordination complexes, [Co2L2(4,4′-bpy)2(H2O)4]?·?6H2O (1) and [CoL(4,4′-bpy)] (2) (H2L?=?4,6-bis(4-methylbenzoyl)isophthalic acid and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized with the same starting materials under conventional and hydrothermal condition, respectively. Their structures have been characterized by X-ray diffraction, elemental analysis, IR spectra, and thermogravimetric analysis. Complex 1 features a 2-D sheet structure (space group C2/c) with (4,4) grid units. The non-covalent interactions (O–H?·?·?·?O, C–H?·?·?·?π, and weak π??·?·?·?π interactions) extend 1 into a 3-D supramolecular network. Complex 2 displays a (3,5)-connected network (space group P 1) with a (42?·?6)(42?·?68) topology.  相似文献   

14.
A metal-organic hybrid compound, Cu[(pyc)2(4,4′-bipy)] ·?H2O (pyc =?pyridine-2-carboxylate, 4,4′-bipy =?4,4′-bipyridine), has been hydrothermally synthesized and characterized by X-ray determination, IR and elemental analysis. The compound crystallizes in tetragonal, space group I41/acd with a =?24.797(2) Å, b =?24.797(2) Å, c =?14.811(2) Å, β =?90°, V =?9106.7(18) Å3, C22 H18N4O5Cu, Mr =?481.94, Dc =?1.406 g cm?3, μ(Mo-Kα) =?0.999 mm?3, F(000) =?3952, Z =?16, the final R =?0.0712 and wR =?0.1886 for 21727 observed reflections (I >?2σ). Compound 1 exhibits a three-dimensional interpenetrating network induced by weak Cu ··· N noncovalent interaction, C–H ··· π?and π–π interactions. Based on crystal data, quantum chemistry calculation at the DFT/B3LPY level was used to reveal the electronic structure of 1.  相似文献   

15.
The reaction of silver perchlorate with 2-amino-3-methylpyridine gives a one-dimensional zigzag coordination polymer {[Ag(2-amino-3-methylpyridine)](ClO4)} (1) consisting of single chains. The geometry of all Ag(I) cations is linear: each ion links together two 2-pyridyl (Ag1) rings and two 2-amino (Ag2) groups, with the ligand exhibiting a ‘head-to-head’ orientation. Crystal data: monoclinic P2(1)/c, a?=?5.2296(8), b?=?20.668(3), c?=?8.8716(14)?Å, β?=?100.359(3)°, V?=?943.3(3)?Å3, Z?=?2, D c ?=?2.214?Mg/m3, μ?=?2.409?mm?1, F(000)?=?612, R1?=?0.0426, wR1?=?0.0980 [I?>?2σ(I)], S?=?0.969.  相似文献   

16.
The treatment of 3-ammonium-1-hydroxypropylidene-1,1′-bisphosphonate (H7ahdp) and 4,4′-bipy with CuCl2?·?2H2O resulted in a metal phosphonate [Cu(H5ahdp)?·?H2O] n . Its crystal structure has been characterized by single X-ray crystallography. Although there is no 4,4′-bipy in the lattice structure, it plays a very important role in forming the one-dimensional chain of the polymer. Hydrogen bonds link the chains into a 3D network. The dinuclear secondary building units are observed in the compound. The determination of variable-temperature magnetic susceptibilities (5?~?300?K) shows weak intrachain antiferromagnetic coupling between copper(II) centers. The magnetic data were fitted to the appropriate equations derived from the Hamiltonian H?=??2JS 1 S 2, giving the parameter J?=??25.78?cm?1. Its thermal properties were also investigated.  相似文献   

17.
Two new CdII complexes, [Cd(L)2(CH3OH)2] (1) and [Cd(L)2(pyz)(H2O)] (2), have been prepared by the reaction of xanthene-9-carboxylic acid (HL) and Cd(ClO4)2·6H2O in the presence or absence of pyz co-ligand (L?=?xanthene-9-carboxylate and pyz?=?pyrazine). Their structures were determined by single-crystal X-ray diffraction. Complex 1 possesses a 1-D zigzag chain structure, whereas 2 has a 1-D linear chain that is further assembled into a 2-D network, and then an overall 3-D framework by inter-chain O–H?···?O hydrogen bonds and C–H?···?π supramolecular interactions. Both 1 and 2 are photoluminescent and their emission properties are closely related to their intrinsic structures.  相似文献   

18.
Two organic–inorganic hybrid polyoxometalates {[V2W4O19{Cu(2,2′-bipy)2}2] · (4,4′-bipy)} n (1) and [Co(2,2′-bipy)3][W6O19] · H2O (2) (2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), constructed by Lindqvist polyanions and transition metal coordination cations, have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, UV spectra, thermogravimetric (TG) analyses, X-ray photoelectron spectroscopy (XPS), and single- crystal X-ray diffraction. Compound 1 is a neutral molecule and consists of a di-VV substituted Lindqvist-type polyanion [V2W4O19]4?, two supporting copper cations [Cu(2,2′-bipy)2]2+ and one free 4,4′-bipy. Neutral molecules of 1 are extended to a 2-D grid-like network by ππ stacking interactions between pyridine groups. The molecular structure of 2 contains one [W6O19]2? cluster polyanion and a [Co(2,2′-bipy)3]2+. Inductively coupled plasma (ICP) analysis and XPS spectrum of 1 prove the presence of VV. TG curves of 1 and 2 indicate two weight loss steps.  相似文献   

19.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

20.
Using pyridine-2,4,6-tricarboxylic acid (H3ptc) and 2,2-bipyridine (2,2-bipy), a tetranuclear copper(II) compound [Cu4(2,2-bipy)4(ptc)2(H2O)2(OH)2] · 12H2O (1) has been isolated under hydrothermal conditions. Variable temperature magnetic susceptibility of 1 from 2–300 K indicates anti-ferromagnetic interactions. The magnetic exchange coupling constants of J = ?159.4 and J′ = ?18.66 cm?1 for 1 can be obtained through fit of the magnetic data, corresponding to two kinds of bridges, hydroxyl anions (OH?) and pyridine carboxylate oxygen of ptc3?. Moreover, decameric water clusters can also be observed, which are located between these tetranuclear copper(II) entities, forming a series of intricate O-H ··· O hydrogen bonds and stabilizing the resulting three-dimensional (3-D) hydrogen-bonded framework structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号