首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Ni(II) mononuclear dithiocarbamate complexes with bidentate P,P ligands of composition [Ni(R2dtc)(P,P)]X {R?=?pentyl (pe), benzyl (bz); dtc?=?S2CN?; P,P?=?1,2-bis(diphenylphosphino)ethane (dppe), 1,4-bis(diphenylphosphino)butane (dppb), 1,1′-bis(diphenylphosphino) ferrocene (dppf); X?=?ClO4, Cl, Br, NCS} and binuclear complexes of composition [Ni2(μ-dpph)(R2dtc)2]X2 with a P,P-bridging ligand {P,P?=?1,6-bis(diphenylphosphino)hexane (dpph); X?=?Cl, Br, NCS} have been synthesized. The complexes have been characterized by elemental and thermal analysis, IR, electronic and 31P{1H}-NMR spectroscopy, magnetochemical and conductivity measurements. Single crystal X-ray analysis of [Ni(pe2dtc)(dppf)]ClO4 confirmed a distorted square planar coordination in the NiS2P2 chromophore. For selected samples, the catalysis of graphite oxidation was studied.  相似文献   

2.
Unsymmetrical Ni(II) complexes of phenyl- and phenethyldithiocarbamate and PPh3 of composition [NiX(HPhdtc)(PPh3)], [NiX(HPhetdtc)(PPh3)], [Ni(HPhdtc)(PPh3)2]ClO4 and [Ni(HPhdtc)(PPh3)2]PF6 {X?=?Cl, Br, I, NCS; HPhdtc?=?phenyldithiocarbamate, HPhetdtc?=phenethyldithiocarbamate, PPh3?=?triphenylphosphine} have been synthesized. The complexes have been characterized by elemental and thermal analysis, IR and electronic spectroscopy, magnetochemical and conductivity measurements. Single-crystal X-ray analysis of [NiBr(HPhdtc)(PPh3)]?·?CHCl3 confirmed a distorted square planar coordination for the NiS2PBr chromophore. For selected samples, the catalytic effects of graphite oxidation were studied.  相似文献   

3.
4.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

5.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

6.
The compounds [Ni(behdtc)2] (1) and [Ni(behdtc)(NCS)(PPh3)] (2) (where behdtc = bis(2-ethylhexyl)dithiocarbamate) were synthesized and characterized by elemental analyses, electronic, IR, and NMR (1H and 13C) spectroscopy. UV-vis spectral data are consistent with the formation of square-planar nickel complexes. The N13CS2 carbon signal for [Ni(behdtc)(NCS)(PPh3)] is observed at 204.4 ppm with an upfield shift of about 3.8 ppm compared with that found in [Ni(behdtc)2] (208.2 ppm). The observed shielding in [Ni(behdtc)(NCS)(PPh3)] indicates the effect of PPh3 on the mesomeric drift of electron density toward nickel through the thioureide C-N bond. This observation is supported by the higher νC-N values observed in the IR spectrum of the complex 2. A single crystal X-ray analysis of complex 2 proved four coordinated nickel in a distorted square-planar arrangement with a S2NP donor set. A significant asymmetry in the Ni–S bond in 2 (2.1690(10) and 2.2234(10)Å) supports the less effective trans effect of SCN? over PPh3. Molecular electrostatic potential surface map shows that there are no possible sites for nucleophilic attack and S atom of thiocyanate is preferred possible site for electrophilic attack.  相似文献   

7.
6-Aminocoumarin reacts with pyridine-2-carboxaldehyde and has synthesized N-[(2-pyridyl)methyliden]-6-coumarin (L). The ligand, L, reacts with [Cu(MeCN)4]ClO4/AgNO3 to synthesize Cu(I) and Ag(I) complexes of formulae, [Cu(L)2]ClO4 and [Ag(L)2]NO3, respectively. While similar reaction in the presence of PPh3 has isolated [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3. All these compounds are characterized by FTIR, UV-Vis and 1H NMR spectroscopic data. In case of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3, the structures have been confirmed by X-ray crystallography. The structure of the complexes are distorted tetrahedral in which L coordinates in a N,N′ bidentate fashion and other two coordination sites are occupied by PPh3. The ligand and the complexes are fluorescent and the fluorescence quantum yields of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3 are higher than [Cu(L)2]ClO4 and [Ag(L)2]NO3. Cu(I) complexes show Cu(II)/Cu(I) quasireversible redox couple while Ag(I) complexes exhibit deposition of Ag(0) on the electrode surface during cyclic voltammetric experiments. gaussian 03 computations of representative complexes have been used to determine the composition and energy of molecular levels. An attempt has been made to explain solution spectra and redox properties of the complexes.  相似文献   

8.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

9.
Summary The use of [RhCl(CO)(PPh3)]2 as a precursor for the synthesis of complexes of the types [Rh(CO)L2(PPh3)]A (A = [ClO4] or [BPh4]; L = pyridine type ligand) and [Rh(CO)(L-L)(PPh3)]A (A = [ClO4] or [BPh4]; L-L = bidentate nitrogen donor) and the preparation of several complexes of the types [Rh(CO)L(PPh3){P(p-RC6H4)3}]BPh4 and [Rh(CO)(phen)(PPh3){P(p-RC6H4)3}]A (A = [ClO4] or [BPh4]; R = H or Me) is described.Author to whom all correspondence should be directed.  相似文献   

10.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

11.
Summary The synthesis and properties of cationic complexes of the type [Rh(NBD)L2]ClO4, [Rh(NBD)L(PPh3)]ClO4 and [Rh(CO)L(PPh3)2]ClO4 (L = substituted quinolines) are described. The diolefin complexes catalyse hydrogen transfer from isopropanol to some unsaturated substrates.  相似文献   

12.
Three complexes of a dithiocarbamate ligand (dbpdtc = benzyl(4-(benzylamino)phenyl)dithiocarbamate), namely [Ni(dbpdtc)2] (1), [Ni(dbpdtc)(NCS)(PPh3)] (2) and [Ni(dbpdtc)(PPh3)2]ClO4 (3) have been prepared. The complexes were characterized by IR, electronic spectroscopy and cyclic voltammetry. A single-crystal X-ray structural analysis was carried out for complex 1 and showed that the nickel is in a distorted square planar environment with a NiS4 chromophore. For the two mixed ligand complexes, the thioureide ν C–N values were shifted to higher wavenumbers compared to [Ni(dbpdtc)2], suggesting increased strength of the thioureide bond due to the presence of the π-accepting phosphine. Electronic spectral studies suggest square planar geometries for the complexes. Cyclic voltammetry showed easier reduction of nickel(II) to nickel(I) in the mixed ligand complexes compared to [Ni(dbpdtc)2].  相似文献   

13.
Bis(diphenylphosphano)alkane- and 1-Diphenylphosphano-2-(2-pyridino)ethane-N-arylsulfinylamine Nickel(0) Complexes Synthesis and properties of the bis(diphenylphosphano)alkane-N-phenyl-sulfinylamine-nickel(0) complexes [Ni{Ph2P(CH2)nPPh2}(PhNSO)] (n = 2 dppe, n = 3 dppp, n = 4 dppb) as well as of the 1-(diphenylphosphano)-2-(2-pyridino)ethane nickel(0) complexes [Ni(dpppe)2], [Ni(dpppe)(p-TolNSO)] and [Ni(dpppe)(PPh3)2] are described. These compounds have been characterized by i. r. and 31P n.m.r. spectroscopy. The N-arylsulfinylamine ligands are η2-(N, S)-side on coordinated.  相似文献   

14.

Ni(II) complexes of composition [Ni(bziprdtc)(dppf)]X, [Ni(but2dtc)(dppf)]X and [Ni(Rdtc)(dppf)]X [bz = C7H7; ipr = C3H7; but = C4H9; R = pld = C4H8; tz = C3H6S; hmi = C6H12; dtc = S2CN; dppf = 1,1'-bis(diphenylphosphino)ferrocene C34H28P2Fe; X = ClO4, I, Br, NCS] were synthesized and characterized X-ray structural analysis of [Ni(hmidtc)(dppf)]ClO4 confirmed coordination number four for nickel in a distorted, square-planar, NiS2P2 arrangement  相似文献   

15.
The 2-picolylpalladium(II) complex [{Pd(CH2Py)Cl(PPh3)}2] (CH2Py=2-picolyl) (I), prepared from 2-picolyl chloride and [Pd(PPh3)4], was treated with lithium bromide, silver acetate, 4-picoline (pic) and silver perchlorate, thallium acetylacetonate{Tl(acac)}, sodium dimenthyldithiocarbamate-water-(1/2) {Na(dmdc). 2 H2O}, and 1,2-bis(diphenylphospino)ethane (dppe) to yield [{PdBr(CH2Py)(PPh3)}2] (II), [{Pd(CH2Py)OAc(PPh3)}2] (III), [{Pd(Ch2Py)(pic)(PPh3)}2](ClO4)2 (IV), [Pd(CH2Py)(acac)(PPh3)] (V), [Pd(CH2Py)(dmdc)(PPh3)] (VI), and [Pd(Ch2Py)Cl(dppe)] (VII), respectively. Halogen abstraction from VII using silver perchlorate afforded an ionic complex [{Pd(CH2Py)(dppe)}2](ClO4)2 (VIII). It was concluded that the 2-picolyl groups in these eight complexes are σ-bonded to palladium, and that in the dinuclear complexes I, II, III, IV, and VIII, they serve as bridging ligands.  相似文献   

16.
Abstract

Six new nickel complexes of two dithiocarbamate ligands (cyfdtc = N-cyclohexyl-N- furfuryldithiocarbamate and bztpedtc = N-benzyl-N-[2-thiophenylethyl]dithiocarbamate) namely, (Ni[cyfdtc]2) (1), (Ni[bztpedtc]2) (2), (Ni[cyfdtc][NCS][PPh3]) (3), (Ni[bztpedtc] [NCS][PPh3]) (4), (Ni[cyfdtc][PPh3]2)ClO4 (5), and (Ni[bztpedtc][PPh3]2)ClO4 (6) have been prepared and characterized using IR, electronic, and NMR (1H and 13C) spectra. A single crystal X-ray structural analysis was carried out for complex 3 and showed that nickel is in a distorted square planar arrangement with the NiS2PN chromophore. The shift in νC?N of the heteroleptic complexes to higher frequencies compared with the parent complex is assigned to mesomeric delocalization of electron density from the

dithiocarbamate ligand toward the metal atom, which increases the contribution of polar thioureide form in mixed ligand complexes. Electronic spectral studies suggest square planar geometry for the complexes. In the 13C NMR spectra, the upfield shift of NCS2 carbon signal for 3 and 4 from the chemical shift value of 1 and 2 is due to effect of PPh3 on the mesomeric drift of electron density toward nickel throughout thioureide C?N bond.  相似文献   

17.
Four new ligands, (4-methyl-phenyl)-pyridin-2-ylmethylene-amine (A), (2,3-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (B), (2,4-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (C) and (2,5-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (D), and their corresponding copper(I) complexes, [Cu(A)2]ClO4 (1a), [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c), [Cu(D)2]ClO4 (1d), [Cu(A)(PPh3)2]ClO4 (2a), [Cu(B)(PPh3)2]ClO4 (2b), [Cu(C)(PPh3)2]ClO4 (2c) and [Cu(D)(PPh3)2]ClO4 (2d), have been synthesized and characterized by CHN analyses, 1H and 13C NMR, IR and UV–Vis spectroscopy. The crystal structures of [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c) and [Cu(A)(PPh3)2]ClO4 · 1/2CH3CN (2a) were determined from single crystal X-ray diffraction. The coordination polyhedron about the copper(I) center in the three complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for the complexes.  相似文献   

18.
Synthesis, spectral and cyclic voltammetric characterization of [Ni(dedtc)(4‐MP)2](ClO4) ( 1 ), [Ni(dedtc)(4‐MP)(NCS)]( 2 ), [Ni(dedtc)(PPh3)(NCS)] ( 3 ) and [Ni(dedtc)(PPh3)(CN)] ( 4 ) (dedtc = diethyldithiocarbamate, 4‐MP = tri(4‐methylphenyl)phosphine, PPh3 = triphenylphophine) are reported. IR spectra of complexes 1‐4 show the characteristic thioureide (C‐N) bands at higher wave numbers compared to that of the parent dithiocarbamate complex [Ni(dedtc)2]. The d‐d transitions are observed in the region 452—482 nm. The CV studies clearly show the presence of reduced electron density on the nickel ions in mixed ligand complexes 1‐4 compared to the parent dithiocarbamate. Single crystal X‐ray structure studies show all the complexes to containplanar NiS2P2, NiS2PN, and NiS2PC chromophores in keeping with the observed diamagnetism. In all the complexes the Ni‐S distances are asymmetric. The thioureide C‐N distance of the complexes 1‐4 are less thanthe C‐N distance observed in the parent [Ni(dedtc)2].  相似文献   

19.
Triphenylphosphane Nickel(0) Complexes with Isocyanide Ligands — [(RNC)nNi(PPh3)4–n] (n = 1–3) Synthesis and properties of the isocyanide triphenylphosphane nickel(0) complexes [(RNC)Ni(PPh3)3], [(RNC)2Ni(PPh3)2] and [(RNC)3Ni(PPh3)] (R = tBu, Cy, PhCH2, p-TosCH2) are described. I.r. and 31P n.m.r. spectra were recorded and the X-ray crystal structure of [(PhCH2NC)2Ni(PPh3)2] was determined.  相似文献   

20.
Five mononuclear nickel(II) complexes, viz. [Ni(L1)(PPh3)] (1), [Ni(L2)(PPh3)] (2), [Ni(L3)(PPh3)] (3), [Ni(L4)(PPh3)] (4) and [Ni(L5)(PPh3)] (5) (where L1, L2, L3, L4 and L5 are dianions of N-(2-mercaptophenyl)salicylideneimine, 5-methyl-N-(2-mercaptophenyl)salicylideneimine, 5-chloro-N-(2-mercaptophenyl)salicylideneimine, 5-bromo-N-(2-mercaptophenyl)salicylideneimine and N-(2-mercaptophenyl)naphthylideneimine, respectively), have been synthesized and characterized by means of elemental analysis, electronic, IR, 1H, 13C and 31P NMR spectroscopy. Single crystal X-ray analysis of two of the complexes (1 and 5) has revealed the presence of a square planar coordination geometry (ONSP) about nickel. The crystal structures of the complexes are stabilized by intermolecular π–π stacking between the ligands (L) and by various C–H···π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号