首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

2.
Triphenylphosphane Nickel(0) Complexes with Isocyanide Ligands — [(RNC)nNi(PPh3)4–n] (n = 1–3) Synthesis and properties of the isocyanide triphenylphosphane nickel(0) complexes [(RNC)Ni(PPh3)3], [(RNC)2Ni(PPh3)2] and [(RNC)3Ni(PPh3)] (R = tBu, Cy, PhCH2, p-TosCH2) are described. I.r. and 31P n.m.r. spectra were recorded and the X-ray crystal structure of [(PhCH2NC)2Ni(PPh3)2] was determined.  相似文献   

3.
Sulfur Dioxide as Ligand and Synthon. XIII. Reactions of Isocyanide-tris(triphenylphosphane)nickel(0) Complexes with Sulfur Dioxide and N-p-tolylsulfinylamine Reactions of the isocyanide-tris(triphenylphosphane)-nickel(0) complexes [(RNC)Ni(PPh3)3] (R = tBu, Cy, PhCH2, p-TosCH2) with SO2 and p-TolNSO are described. The sulfur dioxide and N-p-tolylsulfinylamine complexes obtained by PPh3 ligand substitution have been characterized by means of i.r. and 31P n.m.r. spectra. The X-ray crystal structure of [(Ph3P)2(CyNC)Ni(SO2)] · 0.5 PhMe and (Ph3P)(tBuNC)Ni(η2-p-TolNSO) have been determined.  相似文献   

4.
Ni(II) di(pentyl)dithiocarbamates of composition [Ni(Pe2dtc)2], [NiX(Pe2dtc)(PPh3)] (X = Cl, Br, I, NCS), [Ni(NCS)(Pe2dtc)(PBut3)], [Ni(Pe2dtc)(PPh3)2]ClO4 and [Ni(Pe2dtc)(PPh3)2]PF6 (Pe2dtc = di(pentyl)dithio-carbamate, PPh3 = triphenylphosphine, PBut3 = tributylphosphine) have been synthesized. The complexes have been characterized by the usual methods. X-ray structure analyses confirmed the nature of [NiI(Pe2dtc)(PPh3)] and [Ni(Pe2dtc)(PPh3)2]ClO4 complexes.  相似文献   

5.
Reactions of copper(I) halides with 2-(diphenylphosphano)benzaldehyde (PCHO) in 1:2 molar ratio afforded mononuclear complexes of the type [CuX(PCHO)2], whereas treatment of these compounds with equimolar amounts of pyridine-2-thione or pyrimidine-2-thione gave rise to the formation of mixed-ligand dimers of the formula [CuX(PCHO)(thione)]2. The molecular structures of [CuCl(PCHO)2], [CuBr(PCHO)2] and [CuCl(PCHO)(pymtH)]2 have been established by single-crystal X-ray diffraction. The two homoleptic complexes feature a trigonal copper(I) centre with the phosphane acting as a monodentate ligand via the P atom. In the structure of the dimeric mixed-ligand complex each of the two metal centres exhibit a distorted tetrahedral environment with the thione-S atoms acting in a doubly bridging mode.  相似文献   

6.
The [ReOX2(hbt)(EPh3)] (X = Cl, Br; E = As, P) chelates have been prepared in the reactions of [ReOX3(EPh3)2] complexes (X = Cl, Br; E = P, As) with 2-(2′-hydroxyphenyl)-2-benzothiazole (hbtH) in acetone. From the reactions of [ReOX3(PPh3)2] with hbtH two kind of crystals [ReOX2(hbt)(PPh3)] · MeCN and [ReOX2(hbt)(PPh3)] with different arrangement of halide ions (cis and trans) were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with hbtH to give only cis-halide isomers. The complexes were structurally and spectroscopically characterised. The electronic structures of both [ReOBr2(hbt)(PPh3)] isomers have been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase of cis- and trans-halide isomers of [ReOBr2(hbt)(PPh3)] and the UV–Vis spectra of these complexes have been discussed on this basis.  相似文献   

7.
Modification of Layer Silicates by Sterically Demanding Metal Complexes: Synthesis and Intercalation of the Square Planar Complexes [Cu(bppep)(H2O)](ClO4)2 and [Ni(bppep)(Cl)]Cl (bppep = 2,6-Bis[1-phenyl-1-(pyridine-2-yl)ethyl]pyridine) in Hectorite Sodium-aqua hectorite reacts with [Cu(bppep)(H2O)](ClO4)2 and [Ni(bppep)(Cl)]Cl with exchange of the sodium-aqua cations against the complex cations [Cu(bppep)(H2O)]2+ and [Ni(bppep)(Cl)]+, respectively. In addition, cation-anion pairs of [Cu(bppep)(H2O)](ClO4)2 and [Ni(bppep)(Cl)]Cl are also intercalated between the hectorite layers (intersalation). On the other hand, it is possible to synthesize [Cu(bppep)(H2O)]2+ or [Ni(bppep)(H2O)]2+ modified hectorites without additional ion-pair intercalation (intersalation) by reaction of nickel- and copper-hectorites with the bppep ligand.  相似文献   

8.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

9.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

10.
Several new hexa-coordinated ruthenium(II) and penta-coordinated rhodium(I) complexes of the types [RuCl(CO)(PPh 3 ) 2 (TSC)], [RuH(CO)(PPh 3 ) 2 (TSC)], and [Rh(PPh 3 ) 3 (TSC)] (where TSC = anion of thiosemicarbazone Schiff bases) have been prepared by the reactions of [RuHCl(CO)(PPh 3 ) 3 ], [RuH 2 (CO)(PPh 3 ) 3 )], and [RhH(PPh 3 ) 4 ] with thiosemicarbazones of 2-furaldehyde (H-FTSC), thiophene-2-carboxaldehyde (H-TCTSC), p-anisaldehyde (H-ATSC), piperonaldehyde (H-PTSC), and cyclohexanone (H-CTSC). All the new complexes obtained have been characterized on the basis of elemental analysis, IR, 1 H NMR, 31 P NMR, and electronic spectral data.  相似文献   

11.
6-Aminocoumarin reacts with pyridine-2-carboxaldehyde and has synthesized N-[(2-pyridyl)methyliden]-6-coumarin (L). The ligand, L, reacts with [Cu(MeCN)4]ClO4/AgNO3 to synthesize Cu(I) and Ag(I) complexes of formulae, [Cu(L)2]ClO4 and [Ag(L)2]NO3, respectively. While similar reaction in the presence of PPh3 has isolated [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3. All these compounds are characterized by FTIR, UV-Vis and 1H NMR spectroscopic data. In case of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3, the structures have been confirmed by X-ray crystallography. The structure of the complexes are distorted tetrahedral in which L coordinates in a N,N′ bidentate fashion and other two coordination sites are occupied by PPh3. The ligand and the complexes are fluorescent and the fluorescence quantum yields of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3 are higher than [Cu(L)2]ClO4 and [Ag(L)2]NO3. Cu(I) complexes show Cu(II)/Cu(I) quasireversible redox couple while Ag(I) complexes exhibit deposition of Ag(0) on the electrode surface during cyclic voltammetric experiments. gaussian 03 computations of representative complexes have been used to determine the composition and energy of molecular levels. An attempt has been made to explain solution spectra and redox properties of the complexes.  相似文献   

12.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

13.
The reaction of [ReOCl3(PPh3)2] with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-trazine (dppt) has been examined and [ReCl3(OPPh3)(dppt)] has been obtained. The triphenylphosphine oxide can be easily replaced by PPh3 in the reaction of [ReCl3(OPPh3)(dppt)] with an excess of triphenylphosphine. The [ReCl3(OPPh3)(dppt)] and [ReCl3(PPh3)(dppt)] complexes have been structurally and spectroscopically characterized. Their molecular orbital diagrams have been calculated with the density functional theory (DFT) method, and their electronic spectra have been discussed on the basis of time-dependent DFT calculations. The compound [ReCl3(OPPh3)(dppt)] has been studied additionally by magnetic measurement. The magnetic behavior is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state.  相似文献   

14.
The reactions of 1 mol equiv. each of [Ru(PPh3)3Cl2] and N-(acetyl)-N′-(5-R-salicylidene)hydrazines (H2ahsR, R = H, OCH3, Cl, Br and NO2) in alcoholic media afford simultaneously two types of complexes having the general formulae [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl]. The complexes have been characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. Molecular structures of [Ru(HahsH)(PPh3)2Cl2] and [Ru(ahsH)(PPh3)2Cl] have been confirmed by X-ray crystallography. In both species, the PPh3 ligands are trans to each other. The bidentate HahsH coordinates to the metal ion via the O atom of the deprotonated amide and the imine–N atom in [Ru(HahsH)(PPh3)2Cl2]. In HahsH, the phenolic OH is involved in a strong intramolecular hydrogen bond with the uncoordinated amide N atom forming a seven-membered ring. In [Ru(ahsH)(PPh3)2Cl], the tridentate ahsH2− binds to the metal ion via the deprotonated amide O, the imine N and the phenolate O atoms. In the electronic spectra, the green [Ru(HahsR)(PPh3)2Cl2] and brown [Ru(ahsR)(PPh3)2Cl] complexes display several absorptions in the ranges 385–283 and 457–269 nm, respectively. Both complexes are low-spin and display rhombic EPR spectra in frozen solutions. Both types of complexes are redox active and display a quasi-reversible ruthenium(III) to ruthenium(II) reduction which is sensitive to the polar effect of the substituent on the chelating ligand. The reduction potentials are in the ranges −0.21 to −0.12 and −0.42 to −0.21 V (versus Ag/AgCl) for [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl], respectively.  相似文献   

15.
The reactivity of mixed [organohydrazido(1-)][organohydrazido(2-)]molybdenum(VI) complexes [Mo(NHNRPh)(NNRPh)(acac)X2] {R?=?Ph, X?=?Br (1); R?=?Ph, X?=?I (2) and R?=?Me; X?=?I (3)} with tertiary phosphines as PPh3, PMePh2 and PMe2Ph are examined. The syntheses of [Mo(NNPh2)2Br2(PPh3)] (4), [Mo(NNPh2)2Br2(PMePh2)2] (5), [Mo(NNPh2)2Br2(PMe2Ph)2] (6), [Mo(NNPh2)2(acac)I(PPh3)] (7), [Mo(NNPh2)2(acac)(PMePh2)2]+I? (8) and [Mo(NNMePh)2(acac)(PMePh2)2]+I? (9) are reported. All complexes were characterized by elemental analysis, UV-visible, IR, 1H and 31P{H} NMR spectroscopy.  相似文献   

16.
The reactions of [ReX3(MeCN)(PPh3)2] (X = Cl or Br) with 1-(2-pyridylazo)-2-naphthol (HPAN) have been examined and the [ReBr(PAN)2] · 2CHCl3 (1) and [ReCl(PAN)2] (2) complexes have been obtained. The both complexes have been structurally and spectroscopically characterized, and compound 1 has been additionally studied by magnetic measurements. The magnetic behavior is characteristic of mononuclear seven-coordinated Re(III) complex with d4 low-spin configuration, which gives diamagnetic ground state.  相似文献   

17.
Summary Schiffs bases derived from 2-aminothiazole and substituted benzaldehydes were reacted with [RhCl(PPh3)3] or [Rh(-Cl)(COD)]2 (COD = 1,5-cyclooctadiene) in the presence of four equivalents of PPh3 to give RhIII cyclometallated complexes of the type [RhHCl{(X-benzylidene) thiazole}(PPh3)2], in which the imine C-H added oxidatively to the metal. The complexes were characterized using i.r., u.v. and n.m.r. spectroscopy. The disposition of the hydride ligand was inferred as trans to a N-donor ligand.  相似文献   

18.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The reactions of ruthenium(II) complexes, [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)], with bidentate Schiff base ligands derived by condensing salicylaldehyde with aniline, o-, m- or p-toluidine have been carried out. The products were characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and are formulated as [RuCl(CO)(L)(PPh3)(B)] (L = Schiff base anion; B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. The Schiff bases and the new complexes were tested in vitro to evaluate their activity against the fungus Aspergillus flavus.  相似文献   

20.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号