首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.  相似文献   

2.
Strontium additions in (La1?x Sr x )1?y Mn0.5Ti0.5O3?δ (x?=?0.15–0.75, y?=?0–0.05) having a rhombohedrally distorted perovskite structure under oxidizing conditions lead to the unit cell volume contraction, whilst the total conductivity, thermal and chemical expansion, and steady-state oxygen permeation limited by surface exchange increase with increasing x. The oxygen partial pressure dependencies of the conductivity and Seebeck coefficient studied at 973–1223?K in the p(O2) range from 10?19 to 0.5?atm suggest a dominant role of electron hole hopping and relatively stable Mn3+ and Ti4+ states. Due to low oxygen nonstoichiometry essentially constant in oxidizing and moderately reducing environments and to strong coulombic interaction between Ti4+ cations and oxygen anions, the tracer diffusion coefficients measured by the 18O/16O isotopic exchange depth profile method with time-of-flight secondary-ion mass spectrometric analysis are lower compared to lanthanum–strontium manganites. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range 9.8–15.0?×?10?6?K?1 at 300–1370?K and oxygen pressures from 10?21 to 0.21?atm. The anodic overpotentials of porous La0.5Sr0.5Mn0.5Ti0.5O3?δ electrodes with Ce0.8Gd0.2O2-δ interlayers, applied onto LaGaO3-based solid electrolyte, are lower compared to (La0.75Sr0.25)0.95Cr0.5Mn0.5O3?δ when no metallic current-collecting layers are introduced. However, the polarization resistance is still high, ~2 Ω?×?cm2 in humidified 10?% H2–90?% N2 atmosphere at 1073?K, in correlation with relatively low electronic conduction and isotopic exchange rates. The presence of H2S traces in H2-containing gas mixtures did not result in detectable decomposition of the perovskite phases.  相似文献   

3.
Bis-tris propane or 1,3-bis(tris(hydroxymethyl)methylamino)propane (BTP) and N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) are pH buffers which have been used in biological experiments. To characterize BTP and BES complexation properties with Cu(II), glass electrode potentiometry and direct current polarography were conducted using total ligand to total copper concentration ratios of different orders of magnitude and pH values at 25 °C and 0.1 M KNO3 ionic strength. The graphic analysis is a very powerful tool in the prediction and refinement operations of both systems. For the Cu-BTP system, six species were found to describe totally the system, CuL, CuL(OH), CuL(OH)2, CuL2, CuL2(OH), and CuL2(OH)2, with respective stability constants determined as 10.7 ± 0.1, 19.4 ± 0.4, 24.3 ± 0.2, 18.8 ± 0.1, 24.7 ± 0.2, and 29.8 ± 0.2. CuL2, CuL2(OH), and CuL2(OH)2 were described for the first time. In the case of the Cu-BES system, complexation behavior was described by the model constituted by CuL, CuL(OH), and CuL(OH)2, the latter two described for the first time, with respective stability constants determined as 3.24 ± 0.08, 10.9 ± 0.2, and 16.0 ± 0.3, respectively. UV–vis results allowed us to establish coordination modes for the Cu-BTP and Cu-BES complexes.  相似文献   

4.
Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 ? x )1 ? y Mn0.5Ti0.5O3 ? δ (x = 0–0.25, y = 0–0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 ? δ (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)0.97Mn0.5Ti0.5O3 ? δ and (La0.75Sr0.25)0.97Mn0.5Ti0.5O3 ? δ and a cathode of Sm0.5Sr0.5CoO3 ? δ are manufactured and tested using the voltammetry technique.  相似文献   

5.
In this work, an alkoxide solution route to synthesize Ca phosphates was developed. For the precursors, a CaO2C2H4 solution was prepared by dissolving Ca metal powder into ethylene glycol, and a PO(OH)x(OBut)3–x solution was prepared by dissolving P2O5 inton -butanol under reflux conditions. In order to obtain a mixed solution of the two precursors, acetic acid was used as an additive. The experimental results show that (1) -2CaO · P2O5, -3CaO · P2O5, and hydroxyapatite can be easily synthesized by converting the corresponding mixed solutions to powder products in a hot plate, and calcining the as prepared products at 1100°C; (2) acetic acid behaves as a good agent for controlling the reactions between the two precursors by modifying the CaO2C2H4 species in solution and decreasing the reactivity of the PO(OH)x(OBut)3–x species.  相似文献   

6.
Catalytic hydrogenation of nitroaromatics is an environment-benign strategy to produce industrially important aniline intermediates. Herein, we report that Fe(OH)x deposition on Pt nanocrystals to give Fe(OH)x/Pt, enables the selective hydrogenation of nitro groups into amino groups without hydrogenating other functional groups on the aromatic ring. The unique catalytic behavior is identified to be associated with the FeIII-OH-Pt interfaces. While H2 activation occurs on exposed Pt atoms to ensure the high activity, the high selectivity towards the production of substituted aniline originates from the FeIII-OH-Pt interfaces. In situ IR, X-ray photoelectron spectroscopy (XPS), and isotope effect studies reveal that the Fe3+/Fe2+ redox couple facilitates the hydrodeoxygenation of the -NO2 group during hydrogenation catalysis. Benefitting from FeIII-OH-Pt interfaces, the Fe(OH)x/Pt catalysts exhibit high catalytic performance towards a broad range of substituted nitroarenes.  相似文献   

7.
Ca5(PO4)3CuyO y + δ(OH)0.5 ? y ? δX0.5 compounds (for X = OH, y = 0.01–0.3; for X = F, y = 0.01–0.1; for X = Cl, y = 0.1) have been synthesized by heat treatment of oxide-carbonate mixtures at 1150°C in air and have been characterized by X-ray diffraction, electronic spectroscopy, and magnetic measurements. The compounds have an apatite structure in which copper atoms substitute for part of the hydroxyl hydrogen atoms in hexagonal channels. The electronic spectrum shows two main absorption bands due to d-d transitions in copper(II) linearly coordinated to two oxygen atoms, as well as extra, weaker bands, whose contribution to the overall spectrum decreases with decreasing y. The latter are assignable to copper atoms occupying other sites in the crystal lattice. The temperature dependence of the magnetic susceptibility of the compounds obeys the Curie-Weiss law with a Curie constant close to zero. The Weiss constant characterizes the copper(II) content of the compounds and correlates qualitatively with the intensity of the main absorption bands in the visible spectrum. The fraction of copper(II) in the total amount of copper in the apatites increases in the substituent order X: Cl, OH, F, as well as upon the low-temperature annealing of the compounds in air. At the same time, copper(II) fraction depends only slightly on the total copper content. As the copper(II) content increases, the color of apatite changes from pink to dark claret.  相似文献   

8.
The phase diagram of the binary system tetramethylammonium bromide-water was studied by the differential thermal analysis. In the stable region two phases, ice and the salt itself, were detected, and in the metastable region, three tetramethylammonium bromide hydrates (bromide-water, 1 : 4, mp 68.8°C, 1 : 5, mp 36.0°C, 1 : 7.5, mp ?19.5°C) were found. Formation of (C x H2x+1)4NBr·nH2O (x = 1–3, n = 4, 5, 7.5) hydrates was revealed.  相似文献   

9.
Products of hydrothermal treatment of the initial amorphous system MnxFe2–2x(OH)6–4x for 0x1 in 0.1x intervals, and products of their further thermal treatment, were examined by chemical analysis, X-ray, IR, and DTA techniques supported by magnetic measurements. After hydrothermal growth for lowx, hematite and goethite phases occurred. Although the goethite phase was still identifiable atx=0.6, formation of a solid solution with the isostructural groutite was not found. The ferrimagnetic spinel phase, which resists heating up to 400C, was present at 0.5x0.9. At higher temperatures, it transformed into the rhombohedral hematite type phase or into the cubic bixbyite phase. AtT900C, a ferrimagnetic spinel structure reappeared up tox=0.8. For x=0.9, the low- and high-temperature forms of the hausmannite phase occurred, forx= 1 passing from one form into another through Mn5O8 and partritgeite.For a primary mixture Mn0.5Fe(OH)4, corresponding to the manganese ferrite structure, the lattice parameter of which passes from 8.43 å through 8.33 å to 8.50 å, the probable crystallochemical formula was suggested.We are grateful to KBN (The State Committee for Scientific Research, Poland) for grant No. 3 T09A 064 08, which contributed substantially to the materialization of this project.  相似文献   

10.
Journal of Sol-Gel Science and Technology - Semiconducting oxide nanocomposites of ZnO/SnO2 with different weight ratio, i.e. (i) ZnO:SnO2?=?100:0 (ZnO0), (ii)...  相似文献   

11.
A solid solution Mo6 ? x Nb x I11 (x = 1.1–1.5) containing cluster cores {Mo5NbI8} is obtained by the high-temperature reaction of molybdenum, niobium, and iodine (550°C, 70 h, quartz ampule). According to the X-ray diffraction data, heating at 800°C in a molybdenum container results in the decomposition of the solution to Mo6I12 and Nb6I11. According to the X-ray structure analysis data, the compounds are isostructural to the high-spin modification Nb6I11 (space group Pccn). The presence of Nb atoms in the structure changes the structural type from the layered (Mo6I12) to framework structure, noticeably increases the metalmetal distances (2.661–2.716 Å, 2.695 Å) Mo6 octahedron with the retention of the distance from the metal (M) to the μ3-“capped” I atoms, and strongly elongates the M6-I-M6 bridges almost to the value observed in Nb6I11.  相似文献   

12.
In the sodium-orthophosphate-based solid solutions in Na3 – 2x M x PO4 systems (M = Cd, Pb), the electroconduction is maximum near the upper concentration boundaries of the single-phase regions: x 0.4 for M = Cd and x 0.25 for M = Pb. The conductivity values at 300°C are 6.25 × 10–3 and 2.5 × 10–3 S/cm, respectively. The conduction of synthesized solid electrolytes has a co-cation nature. Their electric characteristics, inferior to those of the Na3PO4-based solid solutions obtained via heterovalent substitutions of another type, may be a manifestation of an effect similar to the polyalkali effect.  相似文献   

13.
Carbocuprate compounds are generally described as multiple perovskites with CO 3 2 - and Cu-O alternating layers containing Ba and/or Sr; they have gained an unexpected importance in the high temperature superconductivity field, because many compounds with transition temperature above 100 K belong to this class of materials.We have started a systematic study on phase formation and stabilisation in the Ba-Cu-C-O system in the temperature range 20-600°C, by using thermal analysis techniques. Starting from a BaCO3-BaO2-CuO mixture (311 mol), a new phase isomorphic with BaCO3 formed after heat treatment above 390°C in air. TG, DSC, EGA and high temperature XRD were employed to follow the complex interaction of the reactants with the atmosphere and the formation of the new phase.  相似文献   

14.
The corundum-type In(2-2x)Zn(x)Sn(x)O(3) solid solution (cor-ZITO, x ≤ 0.7) was synthesized at 1000 °C under a high pressure of 70 kbar. cor-ZITO is a high-pressure polymorph of the transparent conducting oxide bixbyite-In(2-2x)Zn(x)Sn(x)O(3) (x ≤ 0.4). Analysis of the extended X-ray absorption fine structure suggests that significant face-sharing of Zn and Sn octahedra occurs, as expected for the corundum structure type. In contrast to the ideal corundum structure, however, Zn and Sn are displaced and form oxygen bonds with lengths that are similar to those observed in high-pressure ZnSnO(3). Powder X-ray diffraction patterns of cor-ZITO showed the expected unit cell contraction with increased cosubstitution, but no evidence for ilmenite-type ordering of the substituted Zn and Sn. A qualitative second harmonic generation measurement, for the solid solution x = 0.6 and using 1064 nm radiation, showed that Zn and Sn adopt a polar LiNbO(3)-type arrangement.  相似文献   

15.
采用密度泛函理论广义梯度近似平面波赝势法,结合周期平板模型,探讨了水体环境中Pb(OH)+在高岭石铝氧八面体(001)晶面的吸附行为和机理,确定了吸附配合物的结构、配位数、优势吸附位和吸附类型.结果表明,Pb(II)与高岭石铝氧(001)面的氧原子形成单齿或双齿配合物,其配位数为3-5,均为半方位构型.高岭石表面存在含"平伏"氢原子的表面氧(Ol)位和含"直立"氢原子的氧(Ou)位,后者更易与Pb(OH)+单齿配位,该吸附配合物具有较高的结合能(-182.60 kJ·mol-1),为优势吸附物种;高岭石表面位于同一个Al原子上的"OuOl"位可形成双齿配合物.表面Ol与水分子配体形成氢键,对配合物的稳定性起到关键作用.Mulliken布居和态密度分析表明,高岭石单齿配合物中Pb―O成键机理主要为Pb 6p轨道与Pb 6s―O 2p反键轨道进行耦合,电子转移到反键轨道.双齿配合物"Pb―Ol―H"共配位结构中,受配位氢原子影响,Pb―Ol成键过程成键态电子填充占主导地位.  相似文献   

16.
IntroductionBaTiO3isastrongdielectricmaterial,whichiswidelyusedintheproductionofelectriccomponentssuchasceramiccapacitor,PTC,mediumamplifer[1].Ithasthehighestdielectricconstantat120℃(ca.104),whileitsdielectricconstantatroomtemperatureisonly1/6oftheCu…  相似文献   

17.
μ-XAFS analysis using an X-ray μ-beam (1000 nm (h) × 800 nm (v)) was successfully carried out on a single particle of a practical catalyst NiO(x)/Ce(2)Zr(2)O(y) (0 ≤x≤ 1, 7 ≤y≤ 8). The oxidation state and local coordination structure of the NiO(x)/Ce(2)Zr(2)O(y) particle were characterized by Ni K-edge μ-XANES and μ-EXAFS, which showed the catalytically active and inactive phases of a single catalyst particle.  相似文献   

18.
The conductivity and ion and proton transfer numbers were measured in La1 ? x Sr x Sc1 ? y Mg y O3 ? α system (x = y = 0.10–0.20). The partial conductivities (total ion, proton, oxygen, hole) and their effective activation energies were calculated. The measurements were carried out in air with respect to humidity (pH2O = 0.04?2.65 kPa) within the temperature range from 630 to 920°C.  相似文献   

19.
Nanostructured LiAl x Mn2 − x O4 − y Br y particles were synthesized successfully by annealing the mixed precursors, which were prepared by room-temperature solid-state coordination method using lithium acetate, manganese acetate, lithium bromide, aluminum nitrate, citric acid, and polyethylene glycol 400 as starting materials. X-ray diffractometer patterns indicated that the particles of the as-synthesized samples are well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiAl x Mn2 − x O4 − y Br y samples consist of small-sized nanoparticles. The results of galvanostatic cycling tests revealed that the initial discharge capacity of LiAl0.05Mn1.95O3.95Br0.05 is 119 mAh g−1; after the 100th cycle, its discharge capacity still remains at 92 mAh g−1. The introduction of Al and Br in LiMn2O4 bring a synergetic effect and is quite effective in increasing the capacity and elevating cycling performance.  相似文献   

20.
An enantiospecific route to the synthesis of tetrahydroquinoline alkaloids (–)-cuspareine and (–)-galipinine is reported. Coupling of an iodide derivative of D-serine with aromatic dithianes and Pd-catalyzed intramolecular C–N coupling are the key steps in the synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号