首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Chang X  Su Q  Liang D  Wei X  Wang B 《Talanta》2002,57(2):253-261
Poly(acryldinitrophenylamidrazone-dinitroacrylphenylhydrazine) chelating fiber was synthesized from polyacrylonitrile fiber and used for enrichment and separation for traces of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions from solution samples. The acidity, rate, re-use, capacity and interference on the adsorption of ions on the chelating fiber as well as the conditions of desorption of these ions from the chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry. The results show that 10-100 ngml(-1) of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions can be quantitatively enriched by the chelating fiber at a 2 mlmin(-1) of flow rate in the range pH 4-5, and desorbed quantitatively with 20 ml of 5 M HCl for In(III), Bi(III), Zr(IV), V(V), Ga(III), Ti(IV) and 20 ml of 4 M HCl+2% CS(NH(2))(2) solution for Au(III), Ru(III) (with recovery>95%). 50- to 500- fold excesses of Fe(III), Al(III), Mg(II), Mn(II), Ca(II), Cu(II), Ni(II) ions cause little interference in the concentration and determination of analyzed ions. When the fiber was reused for 8 times, the recoveries of the above ions enriched by the fiber were still over 87%. The relative standard deviations (RSDs) for the enrichment and determination of 10 ngml(-1) Au, Ru, In, Bi, Ga and 1 ngml(-1) Zr, V, Ti were lower than 3.0%. The results obtained for these ions in real solution samples by this method were basically in agreement with the given values with average errors of less than 6.3%. FT-IR spectra show that existence of NNCNHNH, OCNHNH and NO(2) functional groups are verified in chelating fiber, and Au(III) or Ru(III) is mainly combined with nitrogen (or oxygen) of the groups to form a chelate complex.  相似文献   

2.
An ICP-OES method using a new poly-acrylacylisothiourea chelating fiber to preconcentrate and separate trace Ti(IV), V(V) and Bi(III) ions from solution samples is established. The results show that 5–25 ng/ml of Ti or V and 50–250 ng/ml of Bi ions in 200–1000 ml of solution can be enriched quantitatively by 0.05 g of the fiber at pH 3 with recoveries over 97%. These ions can be desorbed quantitatively with 10 ml of 4M HC1O4. 100- to 1000-fold excesses of Fe(III), Al(III), Ca(II), Mg(II), Cu(II), Ni(II) and Mn(II) ions cause little interference. The chelating fiber stored for about 2 years can still be used repeatedly for preconcentration and separation of trace Ti, V and Bi ions from solution with above 95% recovery. The RSDs for enrichment and determination of 5 ng/ml of Ti or V and 50 ng/ml of Bi are in the range 2.5–2.8%. The recoveries of added standard in real waste waters and mineral samples are between 96 and 100%, and the concentration found for each ion in the mineral sample was in good agreement with that measured by ETAAS.  相似文献   

3.
Poly(acrylp-aminobenzenesulfonamideamidine-p-aminobenzenesulfonylamide) chelating fiber containing "S", "N", and "O" elements was synthesized from polyacrylonitrile fiber and p-aminobenzene sulfonamide and used to enrich and separate trace Bi(III), Hg(III), Au(III), and Pd(IV) ions from wastewater and ore sample solution. The enrichment acidity, flow rate, elution conditions, reuse, interference ions, saturated adsorption capacity, constant of adsorption rate, analytical accuracy, and actual samples on chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES) with satisfactory results. Solutions of 100 ng mL–1 of Bi(III), Hg(III), Au(III), and Pd(IV) ions can be enriched quantitatively by this chelating fiber at a rate of 1.0 mL min–1 at pH 4 and desorbed quantitatively with 20 mL of 0.25 M HCl and 2% CS(NH2)2 solution at 50 °C (with recovery 97%). When the chelating fiber was reused for 20 times, the recoveries of the analyzed ions enriched by the fiber were still over 95% (except for Hg(III)). One thousand-fold excesses of Mn2+, Ca2+, Zn2+, Mg2+, Fe3+, Cu2+, Ni2+, Al3+, and Ba2+ ions and thousands-fold excesses of Na+ and K+ cause little interference in the pre-concentration and determination of the analyzed ions. The saturated adsorption capacity of Bi(III), Hg(III), Au(III), and Pd(IV) was 4.850×10–4, 3.235×10–4, 2.807×10–4, and 3.386×10–4 mol g–1, respectively. The constants of adsorption rate were 0.409 min–1 for Bi, 0.122 min–1 for Hg, 0.039 min–1 for Au, and 0.080 min–1 for Pd. The relative standard deviations (RSDs) for the enrichment and determination of 10 ng mL–1 Bi(III), Hg(III), Au(III), and Pd(IV) were lower than 2.3%. The results obtained for these ions in actual samples by this method were basically in agreement with the given values with average errors of less than 1.0%. FT-IR spectra shows that the existence of –SO2–Ar, –H2N–Ar, O=C–NH–, HN=C–NH–, and –HN–SO2 functional groups are verified in the chelating fiber. From the FT-IR spectroscopy, we can see that Hg(III), Au(III), and Pd(IV) are mainly combined with nitrogen and sulfur (or oxygen), and Bi(III) is mainly combined with nitrogen (or oxygen) of the groups to form a chelating complex.  相似文献   

4.
《Analytical letters》2012,45(14):2611-2623
Abstract

A new epoxy-urea chelating resin was synthesized from epoxy resin and used for the preconcentration and separation of trace Bi(III), In(III), Sn(IV), Zr(IV), V(V) and Ti(IV) ions from solution samples. The analyzed ions can be enriched at pH 5 at a flow rate of 1–4 ml/min, and can be also desorbed with 10 mL of 2 M HCl +0.1g NH4F solution from the resin column, with recoveries over 97%. The chelating resin reused 6 times can still adsorb quantitatively the Bi, In, Sn, Zr, V and Ti ions, and eighty to thousand-fold excesses of Ca(II), Mg(II), Cu(II), Zn(II), Al(III), Sb(III), Ni(II), Mn(II) and Fe(III) cause little interference with the enrichment and determination of these ions. The RSDs of the proposed method for the determination of 500–50 ng/ml Bi, In and Sn, 50–5.0 ng/ml Zr, V and Ti were in the range of 0.4 ~ 4.0%, the enrichment factor of the resin for the ions is in the range of 10–100. The recoveries of added standard in waste water are between 96% and 100%, and the concentration of each ion in alloy steel sample determined by the method is in good agreement with the reference value analyzed by a steel plant with average error <2.8%.  相似文献   

5.
A new poly(acrylamidrazone-hydrazide lacmoid) chelating fibre has been synthesized from polyacrylonitrile fibre and used for the preconcentration and separation of traces of Cr(III), Ga(III), In(III) and Ti(IV) from solutions with satisfactory results. These ions can quantitatively be enriched by the chelating fibre at a flowrate of 6 ml/min at pH 6, and quantitatively desorbed with 10 ml of eluent at a rate of 4 ml/min. The chelating fibre reused ten times can still quantitatively concentrate traces of the above ions; twenty to two hundred-fold excesses of coexistent ions caused only little interference. With concentrations of 10 ng/ml Cr(III) and Ti(IV), and 50 ng/ml Ga(III) and In(III), the RSD was in the range of 1.4–4.6%. The contents determined in real samples were generally in agreement with the results obtained by HG-AAS; the recoveries of added standards were >96%.  相似文献   

6.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

7.
The metal anions of vanadium (V) and chromium (VI) in aqueous solution can be effectively adsorbed by Zr(IV)-impregnated collagen fiber (ZrICF). The maximum adsorption capacity of V(V) takes place within the pH range of 5.0 to 8.0, while that of Cr(VI) is within the pH range of 6.0 to 9.0. When the initial concentration of metal ions was 2.00 mmol L−1 and the temperature was 303 K, the adsorption capacity of V(V) on Zr-ICF was 1.92 mmol g−1 at pH 5.0, and the adsorption capacity of Cr(VI) was 0.53 mmol g−1 at pH 7.0. As temperature increased, the adsorption capacity of V(V) increased, while that of Cr(VI) was almost unchanged. The adsorption isotherms of the anionic species of V(V) and Cr(VI) can be fit by the Langmuir equation. The adsorption rate of V(V) follows the pseudo-first-order rate model, while the adsorption rate of Cr(VI) follows the pseudo-second-order rate model. Furthermore, ZrICF shows high adsorption selectivity to V(V) in the mixture solution of V(V) and Cr(VI). Practical applications of ZrICF could be expected in consideration of its performance in adsorption of V(V) and Cr(VI).  相似文献   

8.
Gong B  Li X  Wang F  Chang X 《Talanta》2000,52(2):217-223
A novel spherical macroporous epoxy-dicyandiamide chelating resin is synthesized simply and rapidly from epoxy resin and use for the preconcentration and separation of trace Ga(III), In(III), Bi(III), Sn(IV), Pb(II), V(V) and Ti(IV) ions from solution samples. The analyzed ions can be quantitatively concentrated by the resin at flow rate of 3.0 ml min(-1) at pH 3, and can also be desorbed with 10 ml of 4 M HCl+0.2 g thiourea from the resin column with recoveries of 97-100%. The chelating resin is reused for eight times, the recoveries of these ions are still over 92%, and a 100-1000 times of excess of Fe(III), Al(III),Ca(II), Mg(III), Ni(II), Mn(II), Co(II), Cu(II), Zn(II), and Cd(II) cause no interference in the determination of these ions by inductively-coupled plasma atomic emission spectrometry. The capacities of the resin for the analytes are in the range of 0.66-4.20 mmol g(-1). The results show the relative standard deviation for the determination of 50.0 ng ml(-1) Ga(III), In(III), Bi(III), Sn(IV) and Pb(II), 5.0 ng ml(-1) V(V) and Ti(IV) are in the range of 1.2-4.0%. The recoveries of a standard added in real solution samples are between 96 and 100%, and the concentration of each ion in mineral sample detected by the method is in good agreement with the certified value.  相似文献   

9.
Matsumiya H  Iki N  Miyano S 《Talanta》2004,62(2):337-342
Sulfonylcalix[4]arenetetrasulfonate (SO2CAS) has been examined as a pre-column chelating reagent for ultratrace determination of metal ions by ion-pair reversed-phase high-performance liquid chromatography with spectrophotometric detection. Metal ions were converted into the SO2CAS chelates in an acetic buffer solution (pH 4.7). The chelates were injected onto a n-octadecylsilanized silica-type Chromolith™ Performance RP-18e column and were eluted using a methanol (50 wt.%)-water eluent (pH 5.6) containing tetra-n-butylammonium bromide (7.0 mmol kg−1), acetate buffer (5.0 mmol kg−1), and disodium ethylendiamine-N,N,N′,N′-tetraacetate (0.10 mmol kg−1). Under the conditions used, Al(III), Fe(III), and Ti(IV) were selectively detected among 21 kinds of metal ions [Al(III), Ba(II), Be(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hf(IV), In(III), Mg(II), Mn(II), Mo(VI), Ni(II), Pb(II), Ti(IV), V(V), Zn(II), and Zr(IV)]. The detection limits on a 3σ blank basis were 8.8 nmol dm−3 (0.24 ng cm−3) for Al(III), 7.6 nmol dm−3 (0.42 ng cm−3) for Fe(III), and 17 nmol dm−3 (0.80 ng cm−3) for Ti(IV). The practical applicability of the proposed method was checked using river and tap water samples.  相似文献   

10.
A new epoxy-tannin chelating resin was synthesized from epoxy resin and used for the preconcentration and separation of rare elements. The acidity, rate, reuse, capacity and interference on the adsorption of ions on the resin as well as the conditions of desorption of these ions from the resin were investigated by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The composition of the resin and mechanism of enrichment for some ions were discussed. The results show that the relative standard deviations for the determination of 50 ng ml−1 Ga(III), In(III), Bi(III) and Sn(IV), 10 ng ml−1 La(III), Y(III), Cr(III), Ti(IV) and V(V) and 1.0 ng ml−1 Be(II) were in the range of 0.5–4.5%. The contents of these elements in a sample solution from a smelter determined by the new method were in agreement with those values obtained by Zeeman atomic absorption spectrometry with an average error <3.4%.  相似文献   

11.
A new poly(epoxy-melamine) chelating resin is synthesized from epoxy resin and used for the preconcentration and separation of traces of Ru(III), Au(III), V(V) and Ti(IV) ions from sample solutions. The ions analyzed can be quantitatively enriched by the resin at a flow-rate of 2 mL/min at pH 4, and quantitatively desorbed with 10 mL of 1 mol/L HCl + 0.2 g CS(NH2)2 at a flow-rate of 1 mL/min with recoveries of over 97%. The chelating resin can be reused 7 times without obvious loss of efficiency. Thousand-fold excesses of coexistent ions caused little interference during the enrichment and determination steps. The RSDs for the determination of 50 ng/mL Ru(III) and Au(III), 5.0 ng/mL V(V) and Ti(IV) were in the range of 1.5–4.5%. The recoveries of added standards in a real sample solution are between 96% and 100%, and the results for the ions analyzed in a nickel alloy sample are in good agreement with their reported values. Received: 12 May 1997 / Revised: 1 September 1997 / Accepted: 9 October 1997  相似文献   

12.
Takeda Y  Ishida K 《Talanta》1997,44(5):849-853
The thin-layer chromatographic (TLC) behaviour of 64 ions including Zr(IV) and Hf(IV) has been surveyed on systems composed of silica gel and of nitric acid and nitric acid-hydrogen peroxide media. In the 0.5 mol 1(-1) HNO(3)-3% (w/v) H(2)O(2) solution, only Hf(IV) adsorbed very strongly, whereas Zr(IV) and many other ions showed no or weak adsorption. Stepwise development with diluted nitric acid and subsequently with nitric acid-hydrogen peroxide solution allowed the consecutive separation of three-component mixtures consisting of Zr(IV), Hf(IV) and one of many other accompanying elements, such as Mo(VI), Nb(V), Th(IV), Ti(IV), U(VI) and rare earths(III), to be conducted simply and effectively.  相似文献   

13.
A new poly(acrylamidrazone-hydrazide) chelating fiber has been synthesized using polyacrylonitrile fiber as a starting material. An ICP-OES method for applying the fiber to preconcentrate and separate trace Au(III) and Pd(IV) ions in solution has been established. The experiments show that 8 ng/ml Au(III) and 6 ng/ml Pd(IV) in 1000 ml of solution can be enriched quantitatively by the fiber column at a flow rate of 12 ml/min at pH 2. These ions can be desorbed quantitatively with 10 ml of 2.5% CS(NH2)2 + 6% H2SO4 containing 0.2% Fe(II) from the column at an elution rate of 6 ml/min. A fiber treated with 12M HCl or 15M HNO3 can be re-used 10 times with above 95% recoveries of Au(III) and Pd(IV), and 120–800-fold excesses of Cu(II), Mn(II), Fe(III), Al(III), Ni(II), Mg(II) and Ca(II) ions cause little interference. The RSDs are 2.0% for 8 ng/ml Au and 3.5% for 6 ng/ml Pd. The recovery of added standard in a solution sample from a metal smelter is 96.2% for Au and 100% for Pd, and the content of each ion in the sample determined by the method is in agreement with the analysed value from the smelter laboratory.  相似文献   

14.
Chang X  Su Z  Luo X  Zhan G 《Talanta》1993,40(4):527-532
A poly(acrylamidrazone-hydrazide) chelating fiber has been synthesized from polyacrylonitrile fiber and used for enrichment-separation of traces of In(III), Sn(IV), Cr(III), VO(I) and Ti(IV) from solution samples with satisfactory results. These ions (5-250 ng/ml) can be quantitatively enriched (recovery > 95%) by the fiber at a 10 ml/min flow rate in the pH range 4-7, and desorbed quantitatively (recovery > 95%) with 10 ml of 2-5M hydrochloric acid from a fiber column at 6 ml/min flow rate. When the fiber, which had been stored in a glass bottle for about two years and then treated with strong acids (concentrated hydrochloric or nitric acid), was reused 10 times, the recoveries of the above ions by enrichment were still over 94%, and hundred-fold to thousand-fold excesses of Cu(II), Zn(II), Co(II), Ca(II), Mg(II), Fe(III) and Al(III) caused little interference in the determination of these ions by ICP-AES. The lowest concentrations for the proposed method were 50 ng/ml and In and Sn and 5 ng/ml for Cr, V and Ti. The RSD was 1.2-4.0%. The contents of these ions in real solution samples determined by this method were basically in agreement with the certified values of the samples, with average errors below 3.3%. The IR spectra of the fiber adsorbed with Cr(III) or VO(I) showed that Cr(III) or VO(I) combined mainly with nitrogen atoms in the fiber to form a coordination complex.  相似文献   

15.
Summary A new chelating resin has been synthesized by modification of aminated macroporous poly(vinyl chloride) resin with pyrocatechol violet. The conditions for quantitative sorption of traces of Ti(IV), Zr(IV) and Ga(III) and quantitative elution of Ti(IV) and Zr(IV) are investigated. Accordingly, the collector can quantitatively adsorb traces of the above analytes at pH 2.0–6.0. Interferences of coexistent ions with traces of Ti(IV) and Zr(IV) can be neglected. After trace matrix separations by that collector, Ti and Zr determinations in real samples (e.g. steel, geochemical materials) can be performed with satisfactory results.  相似文献   

16.
A new poly(epoxy-melamine) chelating resin is synthesized from epoxy resin and used for the preconcentration and separation of traces of Ru(III), Au(III), V(V) and Ti(IV) ions from sample solutions. The ions analyzed can be quantitatively enriched by the resin at a flow-rate of 2 mL/min at pH 4, and quantitatively desorbed with 10 mL of 1 mol/L HCl + 0.2 g CS(NH2)2 at a flow-rate of 1 mL/min with recoveries of over 97%. The chelating resin can be reused 7 times without obvious loss of efficiency. Thousand-fold excesses of coexistent ions caused little interference during the enrichment and determination steps. The RSDs for the determination of 50 ng/mL Ru(III) and Au(III), 5.0 ng/mL V(V) and Ti(IV) were in the range of 1.5–4.5%. The recoveries of added standards in a real sample solution are between 96% and 100%, and the results for the ions analyzed in a nickel alloy sample are in good agreement with their reported values.  相似文献   

17.
Adsorption behaviour of trace elements, In(III), Sn(IV), Sb(V) and Te(IV) on activated carbon and graphite powder was studied. Adsorption characteristics of the ions enabled the separation of In(III)–Sn(IV), Sn(IV)–Sb(V) and Sb(V)–Te(IV) pairs. Applications to practical separation, milking of113mIn from113Sn, removal of tin impurity from119Sb, and milking of119Sb from119mTe, are presented.  相似文献   

18.
Ga(III), In(III) and Tl(III) ions in the presence of different sulfate salts have been successfully separated using 1-(3,4-dihydroxybenzaldehyde)-2-acetylpyridiniumchloride hydrazone (DAPCH) loaded on Duolite C20 in batch and column modes. The obtained modified resin as well as the metal complexes was characterized by elemental analysis and infrared spectra. The extraction isotherms were determined at different pH values. Ga(III) and In(III) are sorbed from aqueous solution at pH 2.5 - 3.0 while Tl(III) is sorbed at 2.0. The stripping of the adsorbed ions can be carried out using different concentrations of HCl as eluent. The saturation sorption capacities of Ga(III), In(III) and Tl(III) were 0.82, 0.96 and 0.44 mmol g(-1), where the preconcentration factors are 150, 150 and 100, respectively. The metal(III):Duolite C20-DAPCH ratio was 1:2 for Tl(III) and 1:1 for In(III) and Ga(III). The loaded resin can be regenerated for at least 50 cycles. The utility of the modified resin was tested in aqueous samples and the results show an RSD value of < 5% reflecting their accuracy and reproducibility.  相似文献   

19.
An imidazoline group-containing chelating fiber was prepared by means of the reaction of nitrile groups with ethylenediamine in an hydrazine-modified polyacrylonitrile fiber. The adsorption properties of the chelating fiber for Au(III), Pd(II), Pt(IV), Ir(IV), Os(IV), Rh(III) and Ru(IV) ions, such as binding capacity, distribution coefficient, sorptive rate and quantitative elution of Au(III), Pd(II) and Pt(IV) ions were investigated. The imidazoline group-containing chelating fiber possessed high binding capacities and good adsorption kinetic properties, exhibited high affinity for noble metals in 0.1–1.0 mol/L HCl and could be efficiently re-used. After the separation of trace Au(III), Pd(II) and Pt(IV) ions from a matrix using the chelating fiber, these ions could be determined by ICP-AES with satisfactory results, and the relative standard deviation for Au(III), Pd(II) and Pt(IV) ions was less than 6%. Received: 5 July 1999 / Revised: 4 October 1999 / Accepted: 4 October 1999  相似文献   

20.
Summary. Cerium(III/IV) and Ce(IV)–Ti(IV) citric complexes were synthesized in ethylene glycol medium under conditions similar to those of the polymerized complex method (PCM). Solution phase 1H, 13C NMR, solid state 13C CP MAS NMR and IR spectroscopy, and X-ray powder diffractometry were used to characterize the composition and structure of the synthesized products. Thermal decomposition of the isolated complexes was studied and a scheme of the processes taking place is proposed. Complexes of Ce(III) can be prepared at low temperature (40°C), only. In the presence of Ti(IV) ions, the oxidation takes place even at this temperature. A mixed-metal nature of the Ce(IV)–Ti(IV) complexes is established. The comparison between their composition and the one of analogous lanthanide(III)–Ti(IV) citrates contributes to the elucidation of the complexation process mechanism in the case of the PCM application. The increased charge of the complexation agent in the Ce4+–Ti4+ complex (in comparison with Ln 3+–Ti4+ citrates) is “compensated” by the increase of the relative number of the ligands with deprotonated OH group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号