首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
将力学性能优良的碳纳米管(CNTs)与羟基磷灰石(HA)生物陶瓷相复合,发展CNTs/HA复合材料来应用于骨组织修复领域,有望解决HA生物陶瓷力学性能的不足。通过3种不同的制备方法,即通过表面活性剂将CNTs分散在HA基体中、通过酸碱中和反应将CNTs与HA共沉淀以及通过体外浸泡在CNTs上矿化生长HA等方法来获得CNTs/HA复合材料。深入研究CNTs的表面结构和分散状态对CNTs/HA复合材料力学性能的影响。结果表明,CNTs的添加改变了HA的脆性,导致复合材料抗压力学性能得到提高。但是,由于复合材料制备方法的不同,导致CNTs在HA基体中的分散状态、表面结构的完整性以及与HA的界面结合情况不同,导致其抗压力学性能不同。其中,通过表面活性剂将CNTs分散在HA基体中而获得复合材料的抗压力学性能表现最好,而CNTs与HA通过共沉淀法所获得复合材料的抗压力学性能表现最差。  相似文献   

2.
将力学性能优良的碳纳米管(CNTs)与羟基磷灰石(HA)生物陶瓷相复合,发展CNTs/HA复合材料来应用于骨组织修复领域,有望解决HA生物陶瓷力学性能的不足.通过3种不同的制备方法,即通过表面活性剂将CNTs分散在HA基体中、通过酸碱中和反应将CNTs与HA共沉淀以及通过体外浸泡在CNTs上矿化生长HA等方法来获得CNTs/HA复合材料.深入研究CNTs的表面结构和分散状态对CNTs/HA复合材料力学性能的影响.结果表明,CNTs的添加改变了HA的脆性,导致复合材料抗压力学性能得到提高.但是,由于复合材料制备方法的不同,导致CNTs在HA基体中的分散状态、表面结构的完整性以及与HA的界面结合情况不同,导致其抗压力学性能不同.其中,通过表面活性剂将CNTs分散在HA基体中而获得复合材料的抗压力学性能表现最好,而CNTs与HA通过共沉淀法所获得复合材料的抗压力学性能表现最差.  相似文献   

3.
采用溶胶凝胶法合成二氧化硅覆盖的碳纳米管(CNTs/Si O2),通过化学键合法将CNTs/Si O2接上3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MAPS),从而获得富含烯键的MAPS-CNTs/Si O2。以MAPS-CNTs/Si O2为分子印迹载体,芦丁为模板分子,丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯为交联剂,自由基聚合法制备碳纳米管/二氧化硅的表面分子印迹聚合物(CNTs/Si O2-MIPs)。采用红外光谱、热重分析和扫描电镜等方法对CNTs/Si O2-MIPs进行表征,将CNTs/Si O2-MIPs滴涂至玻碳电极表面构建电化学传感器,采用循环伏安法和差分脉冲伏安法对CNTs/Si O2-MIPs修饰电极的电化学行为进行考察。结果表明,CNTs/Si O2-MIPs对芦丁具有良好的特异性吸附性能,印迹材料的DPV电流响应是非印迹材料的2.84倍;相对于其它类似的分子,如槲皮素、柚皮素、抗坏血酸,CNTs/Si O2-MIPs传感器对芦丁具有较好的选择性;CNTs/Si O2-MIPs传感器的电流响应与芦丁的浓度在0.1~100.0μmol/L范围内呈良好的线性关系,检出限(S/N=3)为0.032μmol/L。该传感器已成功应用于药片中芦丁含量的测定。  相似文献   

4.
本文利用引发剂偶氮二异丁腈(AIBN)在碳纳米管(CNTs)表面引发甲基丙烯酸甲酯(MMA)聚合,使CNTS表面接枝聚甲基丙烯酸甲酯(PMMA),提高CNTs与基体的界面粘结力,改善CNTs在基体中的分散状态。通过熔融共混法制备PVDF/CNTs和PVDF/CNTs-PMMA复合材料。结果表明改性后的CNTs在PVDF中的分散更好,PVDF/CNTs复合材料的导电逾渗阈值为0.7 vol%,PVDF/CNTs-PMMA复合材料的导电逾渗阈值为0.28 vol%,降低了60%。这表明通过对填料化学改性是一种降低复合材料逾渗阈值的有效方法。  相似文献   

5.
基于静电吸附作用制备PPy/CNTs复合材料   总被引:1,自引:0,他引:1  
通过添加十二烷基苯磺酸钠(SDBS), 在碳纳米管(CNTs)表面引入具有静电吸附作用的基团, 使吡咯单体附着于CNTs表面, 然后发生化学原位聚合, 得到了由片状聚吡咯(PPy)包覆CNTs所构成的PPy/CNTs复合材料, 开辟了一条易于工业化生产制备PPy/CNTs复合材料的途径. 所得材料和CNTs借助傅立叶变换红外光谱、扫描电子显微镜、透射电子显微镜等设备进行了成分和形貌的表征; 并将所得材料组装成电化学超级电容器, 进行了电化学性能测试. 研究结果表明, 加入SDBS后, 吡咯单体能很好地吸附于CNTs表面; CNTs的应用细化了PPy的颗粒, 改善了PPy的导电性能和机械性能, 使PPy/CNTs复合材料呈现出多孔状; 其电化学容量达到101.1 F·g-1(有机电解液), 是同样制备条件下所得纯PPy电化学容量(19.0 F·g-1)的5倍多, 约是所用纯CNTs电化学容量(25.0 F·g-1)的4倍.  相似文献   

6.
陈姬亮  张贻川 《化学通报》2020,83(2):179-182
本文首先通过溶液混合法将碳纳米管(CNTs)分散到聚碳酸酯(PC)基体中,然后将获得的PC/CNT絮状物通过高温模压的方法制备了一种柔性的高热电性能PC/CNT复合材料。PC/CNT复合材料断面形貌分析表明,CNTs均匀地分散在PC基体中。此外,PC/CNT复合材料的导电性随着CNTs含量的增加而急剧增加,而Seebeck系数几乎保持恒定,使得材料的功率因子随着CNTs含量的增加而快速增加,最大功率因子达到4.6μW·m^-1·K^-2。  相似文献   

7.
以碳纳米管和氧化石墨烯(CNTs/GO)为主体材料, 通过化学还原法制备了CNTs/GO 负载硫的复合正极材料CNTs/GO/S. 扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试表明, CNTs 均匀插层在GO片间, 从而形成三维多孔结构, 有利于电解液的浸润; 活性物质硫均匀地负载在CNTs/GO 表面. 电化学测试表明,CNTs/GO/S复合材料具有高的比容量和良好的循环稳定性: 在1C倍率电流密度下, 复合材料首次放电比容量高达904 mAh·g-1, 经过50圈循环之后, 复合材料的比容量仍保持在578 mAh·g-1.  相似文献   

8.
采用水热辅助溶胶-凝胶工艺,通过原位复合的方法合成了锂离子电池用Li2MnSiO4/CNTs复合正极材料.分析了复合正极材料的形貌和组成特征,并对每摩尔分别复合5,10,20和30 g碳纳米管(CNTs)及未复合CNTs的样品进行了电化学性能测试.结果显示,所合成的Li2MnSiO4颗粒尺寸分布均匀,粒径在100 nm左右,易团聚.但随着CNTs复合量的增加,团聚现象逐渐改善.合成的Li2MnSiO4材料结晶度良好,属于正交晶系Pmn21空间群.电化学测试结果表明,每摩尔复合20 g CNTs的样品电化学性能最佳,在10 mA/g电流密度下,首周放电容量为150 mA.h/g,循环20周后仍保持在80 mA.h/g;CNTs的原位复合可提高Li2MnSiO4材料的导电性能,并改善其电化学性能.  相似文献   

9.
将用喷雾干燥法制备的碳纳米管(CNTs)/丁苯粉末橡胶复合材料在开炼机上机械混炼, 考察机械混炼对复合材料常规力学性能的影响, 并对机械混炼对CNTs增强丁苯橡胶复合材料力学性能的影响进行相应的理论研究和机理分析. 结果表明, 与混炼前的复合材料相比, 机械混炼有效地提高了CNTs/丁苯橡胶复合材料的力学性能, 特别是当CNTs加入量较大时, 提高幅度更为显著, 与填充传统补强剂CB复合材料相比, 具有较大的优势. 这是因为机械混炼一方面使CNTs在橡胶基体中获得了更为充分均匀的分散; 另一方面, 混炼过程中产生的自由基以及巨大的剪切力, 使得CNTs与橡胶基体间界面结合如物理吸附、氢键作用、化学结合等得到了进一步增强, 提高了CNTs/丁苯橡胶复合材料的结合橡胶含量, 更好地发挥了CNTs对丁苯橡胶的补强效应, 从而提高了复合材料的拉伸强度和撕裂强度等力学性能. CNTs补强丁苯橡胶复合材料力学性能的机理符合“强键和弱键学说”.  相似文献   

10.
以乙二醇为还原剂,采用溶剂热法在混酸(V_(H_2SO_4)/V_(HNO_3)=3∶1)超声处理的碳纳米管(CNTs)表面负载氧化亚铜(Cu_2O),通过改变CNTs的含量制备出球形Cu_2O/CNTs复合材料。采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、能谱分析(EDS)、N_2吸附-脱附、紫外-可见光漫反射(DRS)、有机总碳量(TOC)等对Cu_2O/CNTs进行表征;研究CNTs含量对Cu_2O/CNTs复合材料的结构、形貌、比表面积与孔径、光吸收特性的影响;结合光催化机理讨论CNTs对Cu_2O/CNTs光催化性能的影响。结果表明,当CNTs含量为0.2 g时,Cu_2O/CNTs的光催化性能最佳,在可见光照射60 min后,对甲基橙的降解率达到92.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号