首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper reports on the preparation and systematic analysis of energy transfer mechanisms in Nd3+–Yb3+–Er3+ co-doped new series of barium-alumino-metaphosphate glasses. The time resolved fluorescence of Nd3+ in triply doped Ba–Al-metaphosphate glasses have revealed that, Yb3+ ions could function as quite efficient bridge for an energy transfer between Nd3+ and Er3+ ions. As a result, a fourfold emission enhancement at 1.54 μm of Er3+ ions has been achieved through an excitation of 4F5/2 level of Nd3+ at 806 nm for the glass having 3 mol% Yb3+ with an energy transfer efficiency reaching up to 94%. Decay of donor (Nd3+) ion fluorescence has been analyzed based on theoretical models such as direct energy transfer model (Inokuti–Hirayama) and migration assisted energy transfer models (Burshtein’s hopping and Yokota–Tanimoto’s diffusion). The corresponding energy transfer parameters have been evaluated and discussed. Primarily, electrostatic dipole–dipole (s ~ 6) interactions are found to be responsible for the occurrence of energy transfer process in theses glasses.  相似文献   

2.
J. Wang  X. Qiao  M. Wang 《哲学杂志》2013,93(32):3755-3766
Er3+–Yb3+ co-doped glasses and glass ceramics containing LaF3 nanocrystals were prepared and their absorption spectra obtained. The Judd–Ofelt parameters Ω t (t?=?2,?4,?6) for f–f transition of Er3+, as well as spontaneous emission probabilities, branching ratios and radiative lifetimes for stimulated emission of each band were determined. Addition of Er3+ and Yb3+ ions into low-phonon energy LaF3 nanocrystals makes the upconversion emission of Er3+–Yb3+ co-doped glass ceramic much stronger than that of Er3+–Yb3+ co-doped glass.  相似文献   

3.
The Er3+/Yb3+ co-doped TeO2–TiO2–K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.  相似文献   

4.
The method of manufacturing and spectroscopic evaluation of the Er3+ ions doped and Er3+–Yb3+co-doped SiO2–Al2O3–Na2CO3–CaO–PbO–PbF2 oxyfluoride glass fibers is presented in the paper. Both optically active elements erbium and ytterbium were introduced into the batch in the form of fluorides. The X-ray diffraction (XRD) technique was applied at each stage of fibers manufacturing in order to control an amorphous structure of the preforms and fibers. Optical studies of glass preforms and fibers (reflection/transmission, absorption, emission, and excited state absorption (ESA)) were directed to examine their suitability as fiber amplifiers at 1.55 μm band.  相似文献   

5.
Yb3+/Er3+ co-doped Zn2SiO4 ceramics are rapidly synthesized by the microwave radiation method. Green and red up-conversion emissions are observed in Zn2SiO4: Yb3+, Er3+ ceramics under 980 nm excitation. The influence of co-doped Li+ or Bi3+ ion on luminescence intensity for the phosphors has been investigated. At Li+ or Bi3+ doping concentration of 1 mol%, up-converted green emission can be increased by 6 times and 20 times, respectively. It is believed that co-doped Li+ or Bi3+ ion results in the local distortion of Er3+ in Zn2SiO4, increasing the intra-4f transitions of Er3+ ions. The local distortion is proved by spectral probing method with Eu3+.  相似文献   

6.
Results of cooperative phenomena investigations in the impurity subsystem of lithium niobate crystals doped with Er3+ and co-doped with Yb3+ impurity ions under continuous wave and pulsed excitation at 975 nm and 1064 nm wavelengths are presented. Dependences of some spectroscopic characteristics on the intensity of laser pumping are studied. Based on the pair centers model the analysis of the cooperative luminescence behavior in LiNbO3:Yb3++Er3+ crystals is performed.  相似文献   

7.
Yb3+:Er3+:Tm3+ co-doped borosilicate glasses are prepared.Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared,which are excited by a 978-nm laser diode,are measured,and the mechanisms of energy transfer among Yb3+,Er3+ and Tm3+ ions are discussed.The results show that there is an unexpected wavelength at 900-nm emission from Yb3+ Stark splitting levels to pump Tm3+ ions and there exists an optimum pump power.The concentration of the Tm3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the Yb3+:Er3+:Tm3+ co-doped borosilicate glasses.  相似文献   

8.
GdVO4 single crystal co-doped with Yb3+ and Er3+ was grown by the Czochralski method. The X-ray powder diffraction pattern of Yb,Er:GdVO4 crystal confirms that the as-grown crystal is isostructural with pure GdVO4 crystal. Its polarized absorption spectra and non-polarized fluorescence spectra were measured at room temperature. The absorption band at 984 nm for π-polarization has an FWHM of about 36 nm, which is favorable for InGaAs LD laser pumping. The spectrum properties of Er3+ in Yb,Er:GdVO4 crystal were investigated based on Judd–Ofelt theory. There is strong energy transfer from Yb3+ to Er3+ in this crystal. When excited with 980 nm radiation, this crystal emitted strong fluorescence at about 1529 nm and 552.5 nm. The total energy transfer rate and efficiency from Yb3+ to Er3+ is 3.33 ms-1 and 67%, respectively. The energy transfer between Er3+ and Yb3+ ions is a multistep transfer process, and was investigated based on a random-walk model. The investigation result shows that there is strong cooperative-sensitization effect from Yb3+ to Er3+, which is the main upconversion energy-transfer process in this crystal. PACS 42.70.Hj; 81.10.Fq; 42.55.Rz  相似文献   

9.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

10.
In this work, a model for analyzing the gain characteristics of heavily Er3+/Yb3+ co-doped compact fiber amplifier is presented. Four-level rate equations and finite-difference beam propagation method are applied to simulate the optical field evolution along the active fiber. Based on this model, the influences of ion concentration, fiber length and pump power on the gain characteristics of Er3+/Yb3+ co-doped phosphate glass fiber amplifiers are theoretically investigated. Numerical results show that for a fiber length of 3.6 cm the internal gain can reach 27.2 dB with N Er = 2.6 × 1026 ions/m3 and N Yb = 1.2 × 1027 ions/m3 when pumped with 224 mW at 980 nm. The gain per centimeter is 7.56 dB/cm. The results can provide useful information to optimize the gain performance of these compact fiber amplifiers.  相似文献   

11.
Luminescence regularities have been studied in new erbium/ytterbium materials based on glasses and glass ceramics of a magnesium-aluminosilicate system containing nanoscale erbium/ytterbium zirconate titanate crystals with the pyrochlore structure. Lifetimes of Yb3+ and Er3+ ions in the 2 F5/2 state and in the 4I11/2 and 4I13/2 states, respectively, and the efficiency of Yb3+ → Er3+ energy transfer have been evaluated. The identified spectral-luminescent characteristics of the studied glasses and glass ceramics co-doped with erbium and ytterbium ions show that these materials are promising media for producing laser generation in the spectral range around 1.5 μm.  相似文献   

12.
Transparent phosphate glass ceramics co-doped with Er3+ and Yb3+ in the system P2O5Li2OCaF2TiO2 were successfully synthesized by melt-quenching and subsequent heating. Formation of the nanocrystals was confirmed by X-ray powder diffraction. Judd–Ofelt analyses of Er3+ ions in the precursor glasses and glass ceramics were performed to evaluate the intensity parameters Ω2,4,6. Under 975 nm excitation, intense upconversion (UC) and infrared emission (1545 nm) were observed in the glass ceramics by efficient energy transfer from Yb3+ to Er3+. The luminescence processes were explained and the emission cross section was calculated by Fuchtbauer–Ladenburg (F–L) formula. The results confirm the potential applications of Er3+/Yb3+ co-doped glass ceramics as laser and fiber amplifier media.  相似文献   

13.
高浓度镱铒共掺磷酸盐光纤放大器增益特性   总被引:3,自引:0,他引:3       下载免费PDF全文
宋峰  苏瑞渊  傅强  覃斌  田建国  张光寅 《物理学报》2005,54(11):5228-5232
在忽略高能级的自发辐射和光纤损耗的情况下,利用速率方程和传输方程理论研究了高浓度Er3+/Yb3+共掺磷酸盐玻璃光纤放大器的增益特性,讨论了Er3+浓度、Yb3+浓度、抽运光功率、信号光功率、光纤长度对放大器增益的影响,并与单掺铒光纤放大器进行了比较.由于Yb3+的敏化作用降低了铒离子的团簇效应,减少了离子间相互作用,共掺光纤的增益和效率明显高于单掺光纤.数值计算表明,3.2cm长Er3+/Yb3+共掺光纤在980nm的20dBm(100mW)抽运功率下,1532nm处的增益可达10dB. 关键词: 镱铒共掺光纤放大器 速率方程 传输方程 高浓度  相似文献   

14.
Er3+ and Yb3+ ions are introduced into porous silicon films, stabilized by oxidation in an oxygen plasma, in the form of a gadolinium oxychloride-based luminophor by means of thermal diffusion. An investigation is made of the luminescence and photoexcitation spectra of samples with Er3+ (10 and 30 wt.%), Yb3+ (10 wt.%), and Er3, Yb3++ (10 wt.% each). It is shown that the intense IR luminescence (1.00 and 1.54 μm) is caused by cross-relaxation effects. The most effective excitation of the luminescence has been observed in the UV absorption band of the porous silicon. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 428–433, May–June, 1999.  相似文献   

15.
Er3+ doped and Yb3+/Er3+ co-doped Y4Al2O9 phosphors are prepared by the sol-gel method. The effect of dopant concentration on the structure and up-conversion properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to monoclinic. Under 980 nm excitation, the green and red up-conversion emissions are observed and the emission intensities depended on the Yb3+ ion concentration. The green up-conversion emissions decrease with the increase of Yb3+ concentration, while red emission increases as Yb3+ concentration increases from 0 to 8 at% and then decreases at high Yb3+ concentration. The mechanisms of the up-conversion emissions are discussed and results shows that in Er3+ and Yb3+/Er3+ co-doped system, cross-relaxation (CR) and energy transfer (ET) processes play an important role for the green and red up-conversion emissions.  相似文献   

16.
A new method of controlling the amplified spontaneous emission (ASE) from Yb3 + ions in Er3 +/Yb3 + co-doped fiber amplifiers is presented. The 1 μm ASE is suppressed by stimulating a laser emission at 1064 nm in a fiber amplifier, due to a positive feedback for the 1 μm signal. The results are compared to a conventional amplifier setup without any ASE control. We have shown, that applying a feedback loop in an Er3 +/Yb3 + co-doped fiber amplifier allows higher power scaling and provides operation without unwanted parasitic lasing effects, increasing the stability and robustness of the amplifier.  相似文献   

17.
The upconversion luminescence spectral intensity of Er3+ in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ are investigated. Yb3+ ions as a tradition sensibilizer have efficient energy transfer processes from Yb3+ (2F5/2) to Er3+ (4I13/2, 4I11/2, 4F9/2), which lead to the increment of upconversion luminescence intensity. Following by adding Li+ to the Er3+ and Yb3+ codoped ZnO nanocrystals, the upconversion intensity emitted by Er3+ ions is found greatly enhanced. The enhancement is attributed to the distortion of the local field symmetry of Er3+ ions, so increases various intra-4f transitions of Er3+ ions. Both Yb3+ and Li+ can disperse Er3+ ions in specimen, so reduced the interaction between neighboring Er3+ ions.  相似文献   

18.
李成仁  李淑凤  董斌  程宇琪  殷海涛  杨静  陈宇 《中国物理 B》2011,20(1):17803-017803
This paper reports that a series of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J--O intensity parameters Ωk (k=2, 4, 6), spontaneous radiative lifetime τrad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd--Ofelt (J--O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J--O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:Yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm are markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Er3+ to Nd3+ and the contribution of a multi-phonon.  相似文献   

19.
We report the infrared-to-visible frequency upconversion in Er3+–Yb3+-codoped PbO-GeO2 glass containing silver nanoparticles (NPs). The optical excitation is made with a laser at 980 nm in resonance with the 2F5/22F7/2 transition of Yb3+ ions. Intense emission bands centered at 525, 550, and 662 nm were observed corresponding to Er3+ transitions. The simultaneous influence of the Yb3+→Er3+ energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of the whole frequency upconversion spectra.  相似文献   

20.
Yb3+ and Er3+ co-doped GdAlO3 phosphors are prepared by the sol–gel method. The effect of doping concentration on the structure and fluorescence properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to orthorhombic. The photoluminescence results show that both green and red fluorescence emission and upconversion emission intensities decrease with an increase in Yb3+ concentration due to the cross-relaxation process between Yb3+ and Er3+ ions. Based on the emission spectra, the mechanism of the upconversion emission is discussed, and we concluded that the upconversion emission is a two-photon process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号