首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 100 毫秒
1.
优质立方六面体金刚石大单晶的生长研究   总被引:1,自引:2,他引:1  
高温高压静压触媒法合成的金刚石单晶,往往呈现六八面体形貌,因为立方六面体单晶{100}面的生长区间相对较小.本研究利用高温高压温度梯度法,自制Fe-Ni合金触媒,通过对合成组装和工艺进行合理调整后,控制晶体在相对低温适合{100}面生长区域内生长,得到的晶体均呈现完整立方六面体形貌;同时为抑制包裹体和其他杂质的进入,人为的提高晶体的径向平铺生长速度,抑制其轴向生长速度.以在33 h内合成的优质立方六面体晶体为例,晶体最大方向尺寸达到7.3 mm,重1.2克拉,其径向生长速度达到0.22 mm/h,轴向生长速度仅为0.08 mm/h,增重速度为7.3 mg/h.  相似文献   

2.
本文通过温度梯度法在5.5 GPa和1300℃的条件下合成了硼、氮共掺杂金刚石单晶.随后分别在5.0 GPa,2000℃和2100℃的条件下对合成金刚石进行了高温高压(HPHT)退火处理.傅里叶红外光谱(FT-IR)测试表明高温高压退火后晶体内部单一替代形式的C心氮转变成了聚集态A心氮,且随着退火温度的升高A心氮的含量提高.晶体内部带正电荷的氮离子N+的含量并未受到退火处理的影响.经过高温退火后晶体内部出现了NV0和NV-色心,但是继续提高退火温度时NV色心消失.高温高压退火并未对金刚石晶体的结构及内应力产生明显的影响.高温高压退火处理后金刚石晶体的热稳定性能提高,其起始氧化温度、剧烈氧化温度以及质量急剧减少的温度点分别提高了65℃、55℃以及61℃.本文对高温高压退火处理应用到硼、氮共掺杂金刚石提供了指导.  相似文献   

3.
氮(N)元素和硼(B)元素为金刚石晶体中常见的两种杂质元素,它们对金刚石的物理化学性质有着重要的影响.本文使用高温高压温度梯度法合成了分别含有氮和硼杂质的金刚石单晶,并使用Raman光谱对晶体进行分析研究.研究发现:随着金刚石生长体系内杂质的引入,晶体的质量变差;当生长体系含有氮杂质时,生长的含氮金刚石晶体的特征峰谱线向低波数偏移,晶体的应力表现为拉应力;当生长体系含有硼杂质时,生长的含氮金刚石晶体的特征峰谱线向高波数偏移,晶体的应力表现为压应力.本研究将有助于丰富金刚石单晶掺杂的认识.  相似文献   

4.
ZnO晶体的功能梯度分析   总被引:1,自引:0,他引:1  
分析n-ZnO薄膜和硼掺杂p型金刚石薄膜在{111}面金刚石衬底上制作n-ZnO/p-金刚石p-n异质结的应用,ZnO体晶微观结构和缺陷分布及电阻、载流子浓度、迁移率分布特征,探讨了应用功能梯度材料理论研究ZnO晶体材料的方法.从而提出应系统地建立ZnO晶体内部组成和结构的梯度分布特性数据库,从不同的应用角度来进行ZnO晶体材料设计和研究.  相似文献   

5.
金刚石织构体及其纳米级亚晶   总被引:1,自引:0,他引:1  
在冲击合成的金刚石中存在一种织构体组织.织构是由沿[110]cd和[12-10]hd方向排列的金刚石纳米级亚晶组成的.除常见的立方金刚石结构外,还存在一种罕见的六方金刚石结构.它们通常共存在一个金刚石织构体中,形成共生晶体.  相似文献   

6.
本文以自制的Fe基含硼合金作催化剂,石墨片作碳源,压力和温度分别为5.3GPa和1570K条件下,在六面顶压机上合成了0.6mm左右的含硼金刚石晶体.利用X射线衍射仪(XRD)分析了金刚石晶体的结构,证明金刚石是六方结构的.在光学显微镜下观察了金刚石的晶形,利用透射电子显微镜(TEM)和能谱仪(EDS)对金刚石晶体进行了微观分析,发现了多种含硼包裹物,包括(Fe,Ni)23(C,B)6,(Fe,Ni)3(C,B),(Fe,Ni)B,(Fe,Ni)2B,Ni3B,B4C等.研究了它们的化学组成与微观结构,并分析了含硼包裹物的来源与形成过程.结合金刚石的生长过程分析认为,合金触媒是金刚石中包裹物元素的主要来源,通过调整触媒的成份和含量可以控制金刚石内杂质元素的种类.硼元素在金刚石中既可以以化合物的形式存在,也可以替代碳原子存在于金刚石内.  相似文献   

7.
本文首次采用透射电子显微术系统地研究了由FeNi触媒制备的金刚石单晶的微观结构,分析了人造金刚石中存在的晶体缺陷,探讨了这些晶体缺陷形成的原因,研究发现金刚石中存在层错,棱柱位错,位错列和位错网络等晶体缺陷,研究结果表明,金刚石中的晶体缺陷与金刚石的高温高压合成过程密不可分,主要起源于金刚石中大量过饱和的空位和观杂质所引起的内应力。  相似文献   

8.
利用温度梯度法,在6.5 GPa、1 300~1 350℃的高温高压极端物理条件下,通过在FeNiCo-C合成体系中添加硫脲(CH4N2S)成功合成了金刚石,所合成的晶体呈现出黄色且具有六-八面体形貌.利用扫描电镜(SEM)对所合成金刚石的表面形貌进行了表征,测试结果表明,随着合成体系中CH4N2S添加量的逐渐增加,所合成金刚石的表面变得逐渐粗糙.借助傅里叶红外(FT-IR)光谱对金刚石样品内部的氮、氢缺陷以及化学键结构进行了测试分析,结果表明,金刚石中的氢元素以-CH3,-CH2-,C-H形式存在,而其内部的氮杂质以C心、A心形式存在.此外,在3 300~3 600 cm-1观察到NH的吸收带.  相似文献   

9.
采用高质量高温高压单晶金刚石衬底,通过等离子体环境净化的方法获得高纯、低缺陷密度金刚石材料,有望应用于医疗、核、宇宙射线等辐射探测器.采用微波化学气相沉积方法成功外延生长出了8 mm×8 mm的高质量单晶金刚石材料.晶体内无明显的应力集中区,X射线摇摆曲线(004)峰半高宽0.008°,PL光谱中未见与氮相关杂质,基于电子顺磁共振测试孤氮杂质含量为23ppb.  相似文献   

10.
在FeNi+C体系中合成了具有六面体、六八面体、八面体形状的金刚石单晶,晶形完整,包裹体较少.其中,六面体和八面体金刚石内部的包裹体呈辐射状分布,主要分布在从晶体几何中心到顶角的连线上;六八面体内部没有包裹体呈辐射状分布的情况.我们认为,FeNi+C体系合成金刚石,其包裹体的形成在一定程度上源于不同晶向的生长速度差异,当晶体沿某晶向生长速度过快时,杂质元素不能完全及时地排除,在降温时形成了包裹体.Mossbauer测试结果表明金刚石中包裹体的主要成分为Fe3C和FeNi合金.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号