首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological activity of a kind of hetero-bimetallic Schiff-base complex was studied using Escherichia coli (E. coli) cell as the target. By microcalorimetry, the difference of anti-bacterial activity between the binuclear Schiff-base and the ligand was determined and analyzed. To analyze the inhibition of the bacterial growth internally, the E. coli cells grown in the presence of hetero-bimetallic Schiff-base complex were observed by scanning electron microscopy. The images in high resolution revealed the damage of outer cell membrane caused the inhibitory effect on E. coli. Inductively coupled plasma-mass spectrometry results proved the absorption of the complex by cells, which confirmed the interaction between the Schiff-base and biological macromolecule.  相似文献   

2.
As a novel feeding strategy for aptomizing human epidermal growth factor (hEGF) production with a recombinant Hansenula polymorpha DL-1 using the methanol oxidase (MOX) promoter in H. polymorpha DL-1, independent exponential feeding of two substrates was used. A simple kinetic model considering the cell growth on two substrates was established and used to calculate the respective feeding rates of glycerol and methanol. In the fedbatch culture with methanol-only feeding, the optimal set point of specific growth rate on methanol was found to be 0.10 h−1. When the fed-batch cultures were conducted by the independent feeding of glycerol and methanol, the actual specific growth rate on glycerol and methanol was slightly lower than the set point of specific growth rate. By the uncoupled feeding of glycerol and methanol the volumetric productivity of hEGF increased from 6.4 to 8.0 mg/(L·h), compared with methanol-only feeding.  相似文献   

3.
The toxicity of the recombinant protein towards the expression host remains a significant deterrent for bioprocess development. In this study, the expression of human granulocyte macrophage-colony stimulating factor (hGM-CSF), which is known to be toxic to its host, was enhanced many folds using a combination of genetic and bioprocess strategies in Escherichia coli. The N terminus attachment of endoxylanase and asparaginase signal sequences from Bacillus subtilis and E. coli, respectively, in combination with and without His-tag, considerably improved expression levels. Induction and media optimization studies in shake flask cultures resulted in a maximal hGM-CSF concentration of 365 mg/L in the form of inclusion bodies (IBs) with a specific product yield (Y P/X) of 120 mg/g dry cell weight in case of the asparaginase signal. Culturing the cells in nutrient rich Terrific broth maintained the specific product yields (Y P/X) while a 6.6-fold higher volumetric concentration of both product and biomass was obtained. The purification and refolding steps were optimized resulting in a 95% pure protein with a fairly high refolding yield of 45%. The biological activity of the refolded protein was confirmed by a cell proliferation assay on hGM-CSF dependent human erythroleukemia TF-1 cells. This study demonstrated that this indeed is a viable route for the efficient production of hGM-CSF.  相似文献   

4.
The biological effect of tourmaline on the cell membrane of E. coli by microcalorimetry, fluorescence polarization, ion analysis and fourier transform infrared was studied. It was observed that tourmaline of low concentration can promote growth of the bacteria, while tourmaline of high concentration has inhibitory effects on E. coli. Fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. The ion analysis result suggested that the absorbability of nutrition from the medium becomes easier. Thus, E. coli grew faster in the presence of tourmaline than the native. With high concentration of tourmaline, however, the growth of E. coli was inhibited because the selective barrier of cell membrane for the bacteria was seriously damaged. Besides, changes of the spectral profile of E. coli were observed, which has shown the damages of surface groups on the cell membrane, which is the molecular basis for the biological effect of tourmaline. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
BackgroundThe recombinant human truncated Keratinocyte growth factor (Palifermin) is the only FDA approved medicine for the treatment of oral mucositis. The Keratinocyte growth factor is a fairly unstable protein due to its high aggregation propensity and therefore its expression as a secretory protein may results in the production of a protein with more stability, higher solubility, better folding, enhanced biological activity, N-terminal authenticity and simplified downstream processing.ObjectiveThe aim of this study was in silico evaluation of 31 different secretory signal peptides to determine the best theoretical candidates for the secretory production of recombinant truncated human KGF in E. coli.MethodsThirty different prokaryotic signal peptides experimentally shown to be capable of recombinant protein secretion in E.coli, along with the native KGF signal peptide were selected for further investigations. The signal peptide sequences were retrieved from the UniProt database. The ability of SPs to act as a secretory leader peptide for rhKGF and the location of cleavage sites were predicted by SignalP 4.1. Physicochemical properties of the signal peptides, which may influence protein secretion, were analyzed by ProtParam and PROSOII. Furthermore, the mRNA secondary structure and Gibbs free energy profile of the selected SPs were analyzed in the fusion state with the rhKGF using Visual Gene Developer package.Results and ConclusionComputational analysis of the physicochemical properties affecting protein secretion identified Sec-B dependent OmpC, Bla, and StaI and SRP dependent TolB signal peptides as the best theoretical candidates for the secretory production of recombinant truncated human KGF in E.coli.  相似文献   

6.
A novel series of 1,4‐disubstituted‐1,2,3‐triazole derivatives 3a – l and 5a – i were one‐pot synthesized via CuAAC‐alkyne click chemistry and evaluated for their antibacterial activity against four organisms and screened for their anticancer activity against human colon cancer cell line HT‐29 and human lung cancer cell line HTB‐29. These hybrid molecules structure elucidation has been performed by IR, 1H‐NMR, 13C‐NMR, and mass spectral analysis. Synthesized nonsteroidal anti‐inflammatory drugs‐triazoles evaluated for their antibacterial activities against bacterial microorganisms Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumonia. Final compounds 3i , 3c , and 5b showed magnificent broad spectrum activity against P. aeruginosa, K. pneumonia, E. coli, and S. aureus with zone of inhibition values of 20, 15, 17, and 16 mm, respectively. Among the series of compound, 3j showed the best antibacterial activity against all the strains. Further, the compounds 3i and 5a were more cytotoxic than cisplatin against all tested two human cancer cell lines, with 50.8%, and 52.3% and 73.4% and 75.3% of growth, respectively. The synthesized compounds were tested for kinase inhibitory activity against glycogen synthase kinase‐3 protein kinases, in addition, for cytotoxic activity against two different human cancer cell lines.  相似文献   

7.
Hyaluronan (HA) is one of the polysaccharides that is found widely in connective tissue of mammals, and it has no sulfate group and high molecular weight in comparison with other glycosaminoglycans. Glycosaminoglycans are deeply concerned with the manifestation of biofunctions not only by their physical properties but also by physiological ones. In this study, sulfated HA (S‐HA) with various degrees of sulfate substitution and high molecular weight will be synthesized in order to give HA new biological functions. Moreover, the effect of HA and S‐HA on cell proliferation of human epidermal keratinocytes in vitro will be discussed. HA did not affect lag phase, but growth rate (metabolic turnover) of the cell in a logarithmic growth phase which was controlled by the molecular weight of HA. S‐HA stimulated the cell proliferation in the low concentration region under 1 μg/ml. While it inhibited the cell proliferation in the high concentration region over 10 μg/ml. It strongly suppressed the cell proliferation in the logarithmic growth metaphase. These facts were considered to be caused by the change of the cell‐matrix and/or cell–cell interactions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily. Attachment of GITR to its ligand (GITRL) regulates diverse biological functions, including cell proliferation, differentiation, and survival. In this study, the extracellular region of human GITRL (hGITRL) was cloned, expressed, and purified. The coding sequence of the extracellular region of hGITRL was isolated from human brain cDNA and inserted in pET20b vector. The hGITRL was expressed in Escherichia coli BL21 (DE3) Star at 37 and 25 °C. The majority of the protein was found in inclusion bodies. We identified three important factors for efficient refolding of hGITRL: a ratio of GSH/GSSG, pH, and addition of polyethylene glycol. The renaturated protein was purified by Ni-NTA chromatography. The overall yield of the expression and refolding was higher than 50 mg/l E. coli culture grown at 37 °C. Size exclusion chromatography showed that hGITRL exists as mixture of various multimeric forms in solution. We tested the association of recombinant hGITRL with THP-1 and U937 cell lines and its activity to promote extracellular signal-regulated protein kinase phosphorylation. The results showed that the recombinant protein was biologically active.  相似文献   

9.
The spatial and temporal control of biological species is essential in complex microfluidic biosystems. In addition, if the biological species is a cell, microfluidic handling must ensure that the cell's metabolic viability is maintained. The use of DEP for cell manipulation in microfluidics has many advantages because it is remote and fast, and the voltages required for cell trapping scale well with miniaturization. In this paper, the conditions for bacterial cell (Escherichia coli) trapping using a quadrupole electrode configuration in a PDMS microfluidic channel were developed both for stagnant and for in‐flow fluidic situations. The effect of the electrical conductivity of the fluid, the applied electric field and frequency, and the fluid‐flow velocity were studied. A dynamic exchange between captured and free‐flowing cells during DEP trapping was demonstrated. The metabolic activity of trapped cells was confirmed by using E. coli cells genetically engineered to express green fluorescent protein under the control of an inducible promoter. Noninduced cells trapped by negative DEP and positive DEP were able to express green fluorescent protein minutes after the inducer was inserted in the microchannel system immediately after DEP trapping. Longer times of trapping prior to exposure to the inducer indicated first a degradation of the cell metabolic activity and finally cell death.  相似文献   

10.
Well‐defined human epidermal growth factor (hEGF) constructs featuring selectively addressable labels are urgently needed to address outstanding questions regarding hEGF biology. A protein‐engineering approach was developed to provide access to hEGF constructs that carry two cysteine‐based site‐specific orthogonal labeling sites in multi‐milligram quantities. Also, a site‐selective (de)protection and labeling approach was devised, which allows selective modification of these hEGF constructs. The hEGF, featuring three native disulfide bonds, was expressed featuring additional sulfhydryl groups, in the form of cysteine residues, as orthogonal ligation sites at both the N and C termini. Temporary protection of the N‐terminal cysteine unit, in the form of a thiazolidine ring, avoids interference with protein folding and enables sequential labeling in conjunction with the cysteine residue at the C terminus. Based on thus‐generated hEGF constructs, sequential and site‐specific labeling with a variety of molecular probes could be demonstrated, thus leading to a biological fully functional hEGF with specifically incorporated fluorophores or protein cargo and native cellular targeting and uptake profiles. Thus, this novel strategy provides a robust entry to high‐yielding access of hEGF and rapid and easy site‐specific and multifunctional dual labeling of this growth factor.  相似文献   

11.
A fluorescent polypyridyl ruthenium complex was successfully prepared using an amide bond linkage to link two rhodamine moieties through bipyridine groups. Although photo‐induced electron transfer (PET) quenched the fluorescent intensity, the quantum yield of the rhodamine‐modified Ru(II) complex was 0.17 in water, sufficient for observing the fluorophore behaviour in biological systems. The rhodaminemodified Ru(II) complex was found to inhibit the bacterial growth of E. coli. In vitro fluorescence images of human hepatoma cells (SK‐Hep1) showed that a fluorescent polypyridyl ruthenium complex not only supported the above observation but also preferably accumulated in the cytoplasmic region inside the cell. These observations suggest that in addition to strong Ru–DNA interactions, Ru‐protein interactions in the cytoplasmic regions are strong and are therefore important to the development of metallopharmaceuticals.  相似文献   

12.
Functional expression of a β-d-1,4 glucanase-encoding gene (egl1) from a filamentous fungus was achieved in both Escherichia coli and Saccharomyces cerevisiae using a modified version of pRS413. Optimal activity of the E. coli-expressed enzyme was found at incubation temperatures of 60°C, whereas the enzyme activity was optimal at 40°C when expressed by S. cerevisiae. Enzyme activity at different pH levels was similar for both bacteria and yeast, being highest at 5.0. Yeast expression resulted in a highly glycosylated protein of approx 60 kDa, compared to bacterial expression, which resulted in a protein of 30 kDa. The hyperglycosylated protein had reduced enzyme activity, indicating that E. coli is a preferred vehicle for production scale-up.  相似文献   

13.
Immobilized polycationic biocides with phosphonium salt on the surface of poly(propylene) film were prepared by surface photografting and surface antibacterial activity of the resulting films against Staphylococcus aureus and Escherichia coli was explored by the viable cell counting method. These films with phosphonium salts were found to exhibit high antibacterial activity against S. aureus and E. coli—particularly against E. coli. Furthermore, morphological changes of the cells of S. aureus and E. coli in contact with the immobilized phosphonium salt were estimated by scanning electron microscopy. It was found that the immobilized biocides exhibited surface bactericidal activity against both strains as evidenced by shrunken and deformed cells of these species in contact with the immobilized biocides. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Cloning and expression of L-asparaginase gene in Escherichia coli   总被引:1,自引:0,他引:1  
The L-asparaginase (ASN) from Escherichia coli AS1.357 was cloned as a DNA fragment generated using polymerase chain reaction technology and primers derived from conserved regions of published ASN gene sequences. Recombinant plasmid pASN containing ASN gene and expression vector pBV220 was transformed in different E. coli host strains. The activity and expression level of ASN in the engineering strains could reach 228 IU/mL of culture fluid and about 50% of the total soluble cell protein respectively, more than 40-fold the enzyme activity of the wild strain. The recombinant plasmid in E. coli AS1.357 remained stable after 72h of cultivation and 5h of heat induction without selective pressure. The ASN gene of E. coli AS1.357 was sequenced and had high homology compared to the reported data.  相似文献   

15.
In the present work, a series of 18 imidazole–triazole hybrids ( 4a–r ) has been synthesized in good yield from substituted naphthaldehydes and 1,2‐diketones in the presence of ammonium acetate. The synthesized imidazole–triazole hybrid compounds were characterized by spectral techniques and screened in vitro for their antimicrobial activity. Compound 4h was found to be most active against Staphylococcus epidermidis, and compound 4e exhibited promising activity against Escherichia coli. In the fungal species under test, compound 4q was most potent against Aspergillus niger, even better than the fluconazole. Further, compound 4e was docked in the binding site of DNA gyrase topoisomerase II of E. coli.  相似文献   

16.
The triosephosphate isomerase of Leishmania donovani (LdTIM) was expressed at high level in Escherichia coli. The TIM gene was cloned in expression vector pET-23(a) with C-terminal 6× His tag fused in frame, and expressed as a 27.6-kDa protein in E. coli as inclusion bodies. The recombinant LdTIM from E. coli lysate was solubilized in 6 M guanidine hydrochloride and purified by Ni-NTA chromatography. In the present study, the effect of bovine serum albumin on the reactivation of TIM was investigated. Furthermore, 8-anilino-1-naphthalene sulfonic acid was used to detect the structural changes induced by bovine serum albumin (BSA). Here, we conclude that BSA assists in the refolding and regain of LdTIM enzyme activity by providing framework for structure formation. This study indicates that numerous protein–protein contacts are constantly occurring inside the cell that leads to the formation of native protein.  相似文献   

17.
Recent reports describe the inhibition of human dihydrofolate reductase (hDHFR) by natural tea polyphenols. This finding could explain the epidemiologic data on their prophylactic effects for certain forms of cancer, and it raises the possibility that natural and synthetic polyphenols could be used in cancer chemotherapy. In order to obtain larger quantities of hDHFR to support structural studies, we established and validated a baculovirus system for the expression of this protein in Bombyx mori chrysalides (pupae of the silkworm enclosed in a cocoon). To isolate the expressed protein, whole infected pupae were homogenized, and the expressed protein was purified by affinity chromatography. Here, we demonstrate the efficient expression of recombinant hDHFR in this model and report that this newly expressed protein has high enzymatic activity and kinetic properties similar to those previously reported for recombinant hDHFR expressed in Escherichia coli. The purified protein showed dissociation constants for the binding of natural polyphenols similar to that expressed in E. coli, which ensures its usage as a new tool for further structural studies. Although the hDHFR yield per individual was found to be lower in the chrysalides than in the larvae of B. mori, the former system was optimized as a model for the scaled-up production of recombinant proteins. Expression of proteins in chrysalides (instead of larvae) could offer important advantages from both economic and biosecurity aspects.  相似文献   

18.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

19.
A library of 29 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles functionalized with a pyridoxine moiety was synthesized using a three-component one-pot reaction of aldehyde derivative of pyridoxine, malononitrile, and thiophenol. The obtained bipyridine structures were converted into methylpyridinium salts. Several compounds demonstrated expressed antibacterial activity with MICs (minimum inhibitory concentrations) in the range of 0.5–4?µg/mL against the three studied Gram-positive strains and 8–64?µg/mL against the Gram-negative E. coli strain, which was comparable or better than the activity of the reference antimicrobial agents. At the same time, all the synthesized compounds were inactive against the Gram-negative P. aeruginosa. Several compounds also demonstrated high cytotoxic activity against the studied tumor cells, but without selectivity for the normal HSF (human foreskin fibroblast) cells. Despite the preliminary character of the performed biological studies, the obtained results make the obtained structural chemotype a promising starting point for the design of physiologically active compounds.  相似文献   

20.
Neural growth inhibitory factor (GIF), a member of metallothionein family (metallothionein-3, MT3), was well known by its distinct neural growth inhibitory activity, which is not shown by other MT isoforms. However, till now, people still did not know clearly how GIF exerts its biological functions. Since it has been reported that GIF might serve as NO scavenger and was related to the release of zinc, our study was focused on the interaction of GIF and NO. By studying the reactions of human GIF and human MTlg with SNOC-a type of NO donor, it was found that GIF was more reactive than MT-lg toward SNOC. In order to further figure out if the high reactivity of GIF in this reaction resulted from the acid-base catalysis, several mutants were constructed: E23K, E41G/E43A, E23K/E41G/E43A. By studying their basic properties and the reactions toward SNOC, it was found that the S-nitrosylation of GIF was not only related to the acid-base catalysis, but also to the accessibility of metal-thiolate clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号