首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine animals, especially those from tropical waters, are often brilliantly coloured, and bright colouration is widespread in both sessile and non-sessile invertebrates. These spectacular natural colours are common in species inhabiting shallow waters, and appear not only in animals exposed to bright light, but also in those living in dark areas where colours are visible only with artificial illumination. Marine organisms also show variation in colour with depth and geographical location, and display great variety in colour patterning. These colour characteristics are the result of several different processes, and serve various purposes - the distribution and function of pigments seems to vary between invertebrate groups. In addition to playing an important role in how marine organisms interact, pigments may be involved in physiological processes. Although nitrogenous pigments predominate, marine organisms contain pigments belonging to all the major structural classes of natural products, as well as some that are unique to the marine environment. This review discusses the nature and significance of such pigments, the chemical and biological processes involved, the factors responsible for and affecting bright colourations, as well as their evolution and speculation as to their function.  相似文献   

2.
The shell-less herbivorous marine mollusk (sea hare) Aplysia kurodai is known to contain a variety of bioactive substances. While these compounds have been thought to originate from sea algae or their associated microbes, most of their origin and acquisition pathways are still unclear. Six new cytotoxic aplaminone derivatives, bromodopamine-terpenoid hybrid molecules, were isolated from A. kurodai. Among them, isoaplaminone had a reverse prenyl group at the C15 aliphatic chain, which is a rare structural feature from the viewpoint of terpenoid biosynthesis. Investigation for chemical components in A. kurodai and the sea algae collected at several different locations revealed that two major aplaminones were contained in the Laurencia complex species at specific sites. Our chemical and ecological studies provide new insights into the origin of marine alkaloid toxins and their dynamism through the food chain.  相似文献   

3.
海鞘中抗肿瘤活性物质的研究概况   总被引:11,自引:0,他引:11  
王超杰  苏镜娱 《有机化学》1997,17(6):481-487
海鞘的生理活性物质是海洋天然产物化学中引人注目的研究领域之一。近年来,从海鞘中分离出许多结构新颖、生理活性显著的新化合物,引起了有机化学家和药物学家等的日益重视。本文按肽、稠环芳香族生物碱、脂肪族生物碱、多硫化物、大环内酯、萜类化合物等化学结构分类综述海鞘抗肿瘤成分的研究进展。  相似文献   

4.
海洋天然产物研究新进展   总被引:12,自引:0,他引:12  
曾陇梅 《有机化学》1989,9(5):402-413
海洋天然产物化学是目前天然产物化学中最活跃的研究领域之一。近年来,从海洋生物中分离到非常多的化学结构和生理活性上令人注目的新化合物,引起了有机化学家和药物化学家的关注。本文按萜类、太环内酯、聚醚类、生物碱,环肽、含氰化合物、甾醇、聚丙酸酯类化合物等化学结构来概述海洋天然产物研究近年来的进展。  相似文献   

5.
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.  相似文献   

6.
A total of 95 volatile compounds from the essential oil in buds of Syringa oblata Lindl (lilac) were identified by gas chromatography-mass spectrometry (GC-MS) combined with heuristic evolving latent projections (HELP) and moving subwindow searching (MSS). The identified compounds are mainly aliphatic, terpenes and aromatic compounds. Their temperature-programmed retention indices (PTRIs) on HP-5MS and DB-35MS at three heating rates of 2, 4 and 6 degrees C/min from 80 to 290 degrees C were obtained, which showed that aliphatic compounds give nearly constant PTRIs and PTRIs of terpenoids do not vary much at different heating rates. But PTRIs of aromatic compounds exhibit relatively large temperature dependence. PTRIs vary much more on DB-35MS than those on HP-5MS according to the compound types. In general, differences of PTRIs between the two columns increase from aliphatic compounds to terpenoids to polycyclic aromatic compounds. The PTRIs in different heating rates were used as cross-references in the identification of components in the essential oil. When they were used in analysis of essential oil from flowers of lilac, good results were obtained. These PTRIs would be a part of our PTRI database being constructed on components from plant essential oils. The results also showed that efficiency and reliability were improved greatly when chemometric method and PTRIs were used as assistants of GC-MS in identification of chemical components in plant essential oils.  相似文献   

7.
海洋珊瑚中抗肿瘤活性物质及其提取、分离方法   总被引:3,自引:0,他引:3  
珊瑚主要生长在热带、亚热带海洋中,资源非常丰富且具有显著的生物多样性。研究表明,海洋珊瑚中含有许多结构多样、生理活性独特的次生代谢产物。本文概要地介绍了从珊瑚中发现的具有抗肿瘤活性的各种萜类和甾类化合物的来源、结构、抗肿瘤活性和提取、分离方法,同时展望了海洋药物的研究与开发前景。  相似文献   

8.
The establishment of geographic origin chemical biomarkers for the marine salt might represent an important improvement to its valorisation. Volatile compounds of marine salt, although never studied, are potential candidates. Thus, the purpose of this work was the development of a headspace solid phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (HS-SPME/GC-qMS) methodology to study the volatile composition of marine salt. A 65 μm carbowax/divinylbenzene SPME coating fibre was used. Three SPME parameters were optimised: extraction temperature, sample quantity, and presentation mode. An extraction temperature of 60 °C and 16 g of marine salt in a 120 mL glass vial were selected. The study of the effect of sample presentation mode showed that the analysis of an aqueous solution saturated with marine salt allowed higher extraction efficiency than the direct analysis of salt crystals. The dissolution of the salt in water and the consequent effect of salting-out promote the release of the volatile compounds to the headspace, enhancing the sensitivity of SPME for the marine salt volatiles. The optimised methodology was applied to real matrices of marine salt from different geographical origins (Portugal, France, and Cape Verde). The marine salt samples contain ca. 40 volatile compounds, distributed by the chemical groups of hydrocarbons, alcohols, phenols, aldehydes, ketones, esters, terpenoids, and norisoprenoids. These compounds seem to arise from three main sources: algae, surrounding bacterial community, and environment pollution. Since these volatile compounds can provide information about the geographic origin and saltpans environment, this study shows that they can be used as chemical biomarkers of marine salt.  相似文献   

9.
The semivolatile composition of stem-bark of 10 Cinnamomum species, collected from China and Myanmar, were obtained by extraction with diethyl ether and analyzed by GC-FID and GC-MS. Identification of the substances was made by comparison of standards, mass spectra, and retention indices with literature records. Total of 74 compounds were identified. All data were statistically processed with principal component analysis and cluster analysis. Cinnamaldehyde and alpha-cubebene were found as the common constituent of the investigated population. Except Cinnamomum multiflorum, volatile terpenoids were the main constituents of all taxa. Major constituent of C. multiflorum was phenylpropanoid. Cluster subset gave the information that chemical components variation was influenced by geographical sources. Here, the first information on the semivolatile composition of six never investigated species viz. C. multiflorum, C. obtusifolium, C. inunctum, C. chartophyllum, C. pathenoxylon, and C. glanduliferum. Furthermore, those species could be alternative source of bioactive compounds.  相似文献   

10.
An overview of the chemistry and microbiology of calcareous sponges (Calcispongiae) is provided, highlighting the potential of these sessile filter-feeding marine invertebrates and their associated bacteria for the discovery of new bioactive natural products. 103 compounds are presented and 116 references cited.  相似文献   

11.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient’s daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer’s disease.  相似文献   

12.
Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007–2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.  相似文献   

13.
Though numerous nanomaterials with enzyme-like activities have been utilized as probes and sensors for detecting biological molecules, it is still challenging to construct highly sensitive detectors for biomarkers using polymeric materials. Benefiting from the π-d delocalization effect of electrons, excellent metal-chelating property, high electron transferability, and good chemical stability of π-conjugated phthalocyanine, the design of the copper phthalocyanine-based conjugated polymer nanoparticles (Cu-PcCP NPs) as a colorimetric sensor for a variety of biomarkers is reported. The Cu-PcCP NPs are synthesized through a simple microwave-assisted polymerization, and their chemical structures are thoroughly characterized. The colorimetric results of Cu-PcCP NPs demonstrate excellent peroxidase-like detecting activity and also great substrate selectivity than most of the reported Cu-based nanomaterials. The Cu-PcCP NPs can achieve a detection limit of 4.88 μM for the H2O2, 4.27 μM for the L-cysteine, and 21.10 μM for the glucose via a cascade catalytic system, which shows comparable detecting sensitivity as that of many earlier reported enzyme-like nanomaterials. Moreover, Cu-PcCP NPs present remarkable resistance to harsh conditions, including high temperature, low pH, and excessive salts. These highly specific π-conjugated copper-phthalocyanine nanoparticles not only overcome the current limitation of polymeric material-based sensors but also provide a new direction for designing next-generation enzyme-like nanomaterial-based colorimetric biosensors.  相似文献   

14.
南海海绵Axinyssa aplysinoides的化学成份研究(一)   总被引:1,自引:1,他引:0  
从南海海绵Axinyssaaplysinoides中分离得到一甘油醚类化合物C2 7H54 O3。利用IR ,MS,NMR等分析手段确定了它的结构为 1 -( 1 7Z -二十四碳烯基 ) -甘油醚。  相似文献   

15.
Starting with the discovery of penicillin, the pharmaceutical industry has relied extensively on natural products (NPs) as an unparalleled source of bioactive small molecules suitable for antibiotic development. However, the discovery of structurally novel and chemically tractable NPs with suitable pharmacological properties as antibiotic leads has waned in recent decades. Today, the repetitive "rediscovery" of previously known NP classes with limited antibiotic lead potential dominates most industrial efforts. This limited productivity, exacerbated by the significant financial and resource requirements of such activities, has led to a broad de-emphasis of NP research by most pharmaceutical companies, including most recently Merck. Here we review our strategies--both technological and philosophical--in addressing current antifungal discovery bottlenecks in target identification and validation and how such efforts may improve NP-based antimicrobial discoveries when aligned with NP screening and dereplication.  相似文献   

16.
The so-called marine litter, and in particular microplastics (MPs) and nanoplastics (NPs), are ubiquitously distributed and recognised as an emerging risk for the environment and human health. It is known that marine environments are one of the most impacted areas and among them; coastal zones are the most contaminated ones. They are subjected to population pressure, tourism, harbours, desalination plants, marine traffic and fish farms.This review is focused on the Mediterranean Sea, currently considered one hot spot of microplastics pollution in the world, as a consequence of the high number of plastic marine litter generating activities and its characteristic morphology of semi-enclosed sea. MPs and NPs have been detected not only in surface water and water columns but also in sediments, deep seafloor, and biota including fish and seafood for human consumption. Because of this, different European legislation initiatives have been launched during the last years in order to prevent MPs and NPs contamination and to face derived problems. Finally, this review summarises the main problems and shortcomings associated to MPs and NPs analyses such as their identification and quantification or the necessity of standardised protocols.  相似文献   

17.
Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.  相似文献   

18.
Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature—which assume a diverse ‘chemical space’—have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber’s pole worm (Haemonchus contortus)—an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall ‘hit rate’ of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced ‘non-wild-type’ (abnormal) larval phenotypes with reference to ‘wild-type’ (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.  相似文献   

19.
Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research.  相似文献   

20.
The adsorption of two classes of carboxylic ligands (i.e., aliphatic and aromatic small molecules), onto α-alumina nanoparticles was investigated. A new methodology was used whereby two molecules were simultaneously equilibrated with the inorganic material. A two-dimensional representation of the adsorption of the two complexing molecules enables us to differentiate between pairs of ligands with (i) independent adsorption on different sites of the alumina particles, (ii) competing adsorption on the same sites, or (iii) a mix thereof. Both the highest affinity ligands (tetracarboxylic acid, citric acid, and tiron), and the way they compete with lower affinity ligands have been identified. The combination of carbon skeleton and complexing groups required to produce the ligand of highest affinity at pH 5 has been recognized. In particular, the role of the OH in the α position of a carboxylic group and the role of the distance between two carboxylic groups are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号