首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Polyelectrolyte block copolymer micelles assembled thin film is switched in response to local photocatalytic reactions on titanium dioxide, resulting in a layer of variable height, stiffness in response to visible light irradiation. Preosteoblasts migrate toward stiffer side of the substrates.

  相似文献   


2.
A bioinspired adhesive material, polydopamine (pDA), was employed as an interfacial glue to stably immobilize human neural stem cells (hNSCs) on the external surface of biodegradable polycaprolactone (PCL) microspheres, thereby serving as versatile key systems that can be used for cell carriers. The pDA decoration on the PCL microspheres has been resulted in robust hNSC immobilization as well as proliferation on their curved surfaces. The pDA coating has transformed the hydrophobic PCL systems toward water‐friendly and sticky characteristics, thereby resulting in full dispersion in aqueous solution and stable adherence onto a wet biological surface. Adeno‐associated virus, a safe gene vector capable of effectively regulating cell behaviors, can be decorated on the PCL surfaces and delivered efficiently to hNSCs adhered to the microsphere exteriors. These distinctive multiple benefits of the sticky pDA microspheres can provide core technologies that can boost the therapeutic effects of cell therapy approaches.

  相似文献   


3.
A polyzwitterion is synthesized by regioselective functionalization of cellulose possessing a uniform charge distribution. The positively charged ammonium group is present at position 6, while the negative charge of carboxylate is located at positions 2 and 3 of the repeating unit. The molecular structure of the biopolymer derivative is proved by NMR spectroscopy. This cellulose‐based zwitterion is applied to several support materials by spin‐coating and characterized by means of atomic force microscope, contact angle measurements, ellipsometry, and X‐ray photoelectron spectroscopy. The coatings possess antimicrobial activity depending on the support materials (glass, titanium, tissue culture poly(styrene)) as revealed by confocal laser scanning microscopy and live/dead staining.

  相似文献   


4.
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride‐ester) (PAE) backbone via melt‐condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin‐based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo‐first order kinetic experiments on model compounds, butyric anhydride and 3‐butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin‐based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods.

  相似文献   


5.
Poly(ethylene glycol)‐poly(lactide) (PEG‐PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star‐shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  相似文献   


6.
Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre‐established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip‐coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti‐adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non‐mucoid strain. Unexpectedly, treatment with heat‐inactivated enzyme also inhibits the attachment of mucoid and non‐mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis‐independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

  相似文献   


7.
The aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA‐based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)‐based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy. The thiolated BPEI is readily self‐crosslinked in mild conditions to make high molecular weight rBPEI thus allowing the creation of stable siRNA/rBPEI nanoparticles (siRNA‐rBPEI‐NPs). In the therapeutic region, the rBPEI polymeric matrix is effectively degraded into nontoxic LMW BPEI inside the reductive cytosol causing the rapid release of the encapsulated siRNA into the cytosol to carry out its function. The fluorescent‐labeled siRNA‐rBPEI‐NPs can release siRNA into the entire corneal region after subconjuctival injection into the eye of Sprague Dawley rats thus confirming the proof of concept of this system.

  相似文献   


8.
New biomaterials with the properties of both bone and cartilage extracellular matrices (ECM) should be designed and used with co‐culture systems to address clinically applicable osteochondral constructs. Herein, a co‐culture model is described based on a trilayered silk fibroin‐peptide amphiphile (PA) scaffold cultured with human articular chondrocytes (hACs) and human bone marrow mesenchymal stem cells (hBMSCs) in an osteochondral cocktail medium for the cartilage and bone sides, respectively. The presence of hACs in the co‐cultures significantly increases the osteogenic differentiation potential of hBMSCs based on ALP activity, RT‐PCR for osteogenic markers, calcium analyses, and histological stainings, whereas hACs produces a significant amount of glycosaminoglycans (GAGs) for the cartilage region, even in the absence of growth factor TGF‐β family in the co‐culture medium. This trilayered scaffold with trophic effects offers a promising strategy for the study of osteochondral defects.

  相似文献   


9.
Phospholipid‐detergent conjugates are proposed as fusogenic carriers for gene delivery. Eleven compounds are prepared and their properties are investigated. The ability of the conjugates to promote fusion with a negatively charged model membrane is determined. Their DNA delivery efficiency and cytotoxicity are assessed in vitro. Lipoplexes are administered in the mouse lung, and transgene expression Indeterminate inflammatory activity are measured. The results show that conjugation of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) with C12E4 produces a carrier that can efficiently deliver DNA to cells, with negligible ­associated toxicity. Fusogenicity of the conjugates shows good correlation with in vitro transfection efficiency and crucially depends on the length of the polyether moiety of the detergent. Finally, DOPC‐C12E4 reveals highly potent for in vivo DNA delivery and favorably compares to GL67A, the current golden standard for gene delivery to the airway, opening the way for further promising developments.

  相似文献   


10.
The aim of this study is to design a polymeric nanogel system with tailorable degradation behavior. To this end, hydroxyethyl methacrylate‐oligoglycolates‐derivatized poly(hydroxypropyl methacrylamide) (pHPMAm‐Gly‐HEMA) and hydroxyethyl methacrylamide‐oligoglycolates‐derivatized poly(hydroxyethyl methacrylamide) (pHEMAm‐Gly‐HEMAm) are synthesized and characterized. pHEMAm‐Gly‐HEMAm shows faster hydrolysis rates of both carbonate and glycolate esters than the same ester groups of pHPMAm‐Gly‐HEMA. pHEMAm‐Gly‐HEMAm nanogels have tailorable degradation kinetics from 24 h to more than 4 d by varying their crosslink densities. It is shown that the release of a loaded macromolecular model drug is controlled by degradation of nanogels. The nanogels show similar cytocompatibility as PLGA nanoparticles and are therefore considered to be attractive systems for drug delivery.

  相似文献   


11.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


12.
Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of “virtually imprinted receptors” for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems.

  相似文献   


13.
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.

  相似文献   


14.
Adhesion and proliferation of cells are often suppressed in rigid hydrogels as gel stiffness induces mechanical stress to embedded cells. Herein, the composite hydrogel systems to facilitate high cellular activities are described, while maintaining relatively high gel stiffness. This unusual property is obtained by harmonizing gelatin‐poly(ethylene glycol)‐tyramine (GPT, semisynthetic polymer) and gelatin‐hydroxyphenyl propionic acid conjugates (GH, natural polymer) into hydrogels. A minimum GH concentration of 50% is necessary for cells to be proliferative. GPT is utilized to improve biological stability (>1 week) and gelation time (<20 s) of the hydrogels. These results suggest that deficiency in cellular activity driven by gel stiffness could be overcome by finely tuning the material properties in the microenvironments.

  相似文献   


15.
A series of novel pH‐sensitive gene delivery vectors (POEI 1, 2, and 3) are synthesized through Michael addition from low molecular weight PEI (LMW PEI) via acid‐labile ortho ester linkage with terminal acrylates (OEAc) by various feed molar ratios. The obtained POEI 1 and POEI 2 can efficiently condense plasmid DNA into nanoparticles with size range of 200–300 nm and zeta‐potentials of about +15 mV while protecting DNA from enzymatic digestion compared with POEI 3. Significantly, ortho ester groups of POEI main‐chains can make an instantaneous degradation‐response to acidic endosomal pH (≈5.0), resulting in accelerated disruption of polyplexes and intracellular DNA release. MTT assay reveals that all POEIs exhibit much lower cytotoxicity in different cells than branched PEI (25 KDa). As expected, POEI 1 and POEI 2 perform improved gene transfection in vitro, suggesting that such polycations might be promising gene vectors based on overcoming toxicity‐efficiency contradiction.

  相似文献   


16.
A visible light and pH responsive anticancer drug delivery system based on polymer‐coated mesoporous silica nanoparticles (MSNs) has been developed. Perylene‐functionalized poly(dimethylaminoethyl methacrylates) sensitive to visible light and pH are electrostatically attached on the surface of MSNs to seal the nanopores. Stimulation of visible light and acid can unseal the nanopores to induce controlled drug release from the MSNs. More interestingly, the release can be enhanced under the combined stimulation of the dual‐stimuli. The synergistic effect of visible light and acid stimulation on the efficient release of anticancer drugs from the nanohybrids endows the system with great potential for cancer therapy.

  相似文献   


17.
In order to construct unique polypeptide architectures, a novel telechelic‐type initiator with two leucine ethyl ester units is designed for chemoenzymatic polymerization. Glycine or alanine ethyl ester is chemoenzymatically polymerized using papain in the presence of the initiator, and the propagation occurs at each leucine ethyl ester unit to produce the telechelic polypeptide. The formation of the telechelic polypeptides is confirmed by 1H NMR and MALDI‐TOF mass spectroscopies. It is revealed by AFM observation that long nanofibrils are formed from the telechelic polyalanine, whereas a conventional linear polyalanine with a similar degree of polymerization shows granule‐like structures. The telechelic polyglycine and polyalanine show the crystalline structures of Polyglycine II and antiparallel β‐sheet, respectively. It is demonstrated that this method to synthesize telechelic‐type polypeptides potentially opens up a pathway to construct novel hierarchical structures by self‐assembly.

  相似文献   


18.
Gelatin nanoparticles can be tuned with respect to their drug loading efficiency, degradation rate, and release kinetics, which renders these drug carriers highly suitable for a wide variety of biomedical applications. The ease of functionalization has rendered gelatin an interesting candidate material to introduce specific motifs for selective targeting to specific organs, but gelatin nanoparticles have not yet been modified to increase their affinity to mineralized tissue. By means of conjugating bone‐targeting alendronate to biocompatible gelatin nanoparticles, a simple method is developed for the preparation of gelatin nanoparticles which exhibit strong affinity to mineralized surfaces. It has been shown that the degree of alendronate functionalization can be tuned by controlling the glutaraldehyde crosslinking density, the molar ratio between alendronate and glutaraldehyde, as well as the pH of the conjugation reaction. Moreover, it has been shown that the affinity of gelatin nanoparticles to calcium phosphate increases considerably upon functionalization with alendronate. In summary, gelatin nanoparticles have been developed, which exhibit great potential for use in bone‐specific drug delivery and regenerative medicine.

  相似文献   


19.
Bacteria reside within biofilms at the infection site, making them extremely difficult to eradicate with conventional wound care products. Bacteria use quorum sensing (QS) systems to regulate biofilm formation, and QS inhibitors (QSIs) have been proposed as promising antibiofilm agents. Despite this, few antimicrobial therapies that interfere with QS exist. Nontoxic hydroxypropyl‐β‐cyclodextrin‐functionalized cellulose gauzes releasing a burst of the antibiotic vancomycin and the QSI hamamelitannin are developed, followed by a sustained release of both. The gauzes affect QS and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro model of chronic wound infection and can be considered as candidates to be used to prevent wound infection as well as treat infected wounds.

  相似文献   


20.
For the design of a biohybrid structure as a ligand‐tailored drug delivery system (DDS), it is highly sophisticated to fabricate a DDS based on smoothly controllable conjugation steps. This article reports on the synthesis and the characterization of biohybrid conjugates based on noncovalent conjugation between a multivalent biotinylated and PEGylated poly(amido amine) (PAMAM) dendrimer and a tetrameric streptavidin‐small protein binding scaffold. This protein binding scaffold (SA‐ABDwt) possesses nM affinity toward human serum albumin (HSA). Thus, well‐defined biohybrid structures, finalized by binding of one or two HSA molecules, are available at each conjugation step in a controlled molar ratio. Overall, these biohybrid assemblies can be used for (i) a controlled modification of dendrimers with the HSA molecules to increase their blood‐circulation half‐life and passive accumulation in tumor; (ii) rendering dendrimers a specific affinity to various ligands based on mutated ABD domain, thus replacing tedious dendrimer–antibody covalent coupling and purification procedures.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号