首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are concerned with a problem in which a firm or franchise enters a market by locating new facilities where there are existing facilities belonging to a competitor. The firm aims at finding the location and attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the other hand, can react by adjusting the attractiveness of its existing facilities with the objective of maximizing its own profit. The demand is assumed to be aggregated at certain points in the plane and the facilities of the firm can be located at predetermined candidate sites. We employ Huff’s gravity-based rule in modeling the behavior of the customers where the fraction of customers at a demand point that visit a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. We formulate a bilevel mixed-integer nonlinear programming model where the firm entering the market is the leader and the competitor is the follower. In order to find the optimal solution of this model, we convert it into an equivalent one-level mixed-integer nonlinear program so that it can be solved by global optimization methods. Apart from reporting computational results obtained on a set of randomly generated instances, we also compute the benefit the leader firm derives from anticipating the competitor’s reaction of adjusting the attractiveness levels of its facilities. The results on the test instances indicate that the benefit is 58.33% on the average.  相似文献   

2.
In this paper, we present the problem of optimizing the location and pricing for a set of new service facilities entering a competitive marketplace. We assume that the new facilities must charge the same (uniform) price and the objective is to optimize the overall profit for the new facilities. Demand for service is assumed to be concentrated at discrete demand points (customer markets); customers in each market patronize the facility providing the highest utility. Customer demand function is assumed to be elastic; the demand is affected by the price, facility attractiveness, and the travel cost for the highest-utility facility. We provide both structural and algorithmic results, as well as some managerial insights for this problem. We show that the optimal price can be selected from a certain finite set of values that can be computed in advance; this fact is used to develop an efficient mathematical programming formulation for our model.  相似文献   

3.
研究企业新建设施时,市场上已有设施存在的情况下,使本企业总体利润最大的截流设施选址问题。在一般截留设施选址模型的基础上引入引力模型,消费者到某个设施接受服务的概率与偏离距离及设施的吸引力相关,同时设施的建设费用与设施吸引力正相关,建立非线性整数规划模型并使用贪婪算法进行求解。数值分析表明,该算法求解速度快,模型计算精度较高。  相似文献   

4.
In this paper we propose a new model for the p-median problem. In the standard p-median problem it is assumed that each demand point is served by the closest facility. In many situations (for example, when demand points are communities of customers and each customer makes his own selection of the facility) demand is divided among the facilities. Each customer selects a facility which is not necessarily the closest one. In the gravity p-median problem it is assumed that customers divide their patronage among the facilities with the probability that a customer patronizes a facility being proportional to the attractiveness of that facility and to a decreasing utility function of the distance to the facility.  相似文献   

5.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

6.
We consider discrete competitive facility location problems in this paper. Such problems could be viewed as a search of nodes in a network, composed of candidate and customer demand nodes, which connections correspond to attractiveness between customers and facilities located at the candidate nodes. The number of customers is usually very large. For some models of customer behavior exact solution approaches could be used. However, for other models and/or when the size of problem is too high to solve exactly, heuristic algorithms may be used. The solution of discrete competitive facility location problems using genetic algorithms is considered in this paper. The new strategies for dynamic adjustment of some parameters of genetic algorithm, such as probabilities for the crossover and mutation operations are proposed and applied to improve the canonical genetic algorithm. The algorithm is also specially adopted to solve discrete competitive facility location problems by proposing a strategy for selection of the most promising values of the variables in the mutation procedure. The developed genetic algorithm is demonstrated by solving instances of competitive facility location problems for an entering firm.  相似文献   

7.
This paper considers the problem of locating semi-obnoxious facilities assuming that demand points within a certain distance from an open facility are expropriated at a given price. The objective is to locate the facilities so as to minimize the total weighted transportation cost and expropriation cost. Models are developed for both single and multiple facilities. For the case of locating a single facility, finite dominating sets are determined for the problems on a plane and on a network. An efficient algorithm is developed for the problem on a network. For the case of locating multiple facilities, a branch-and-bound procedure using Lagrangian relaxation is proposed and its efficiency is tested with computational experiments.  相似文献   

8.
This paper extends the location-allocation formulation by making the cost charged to users by a facility a function of the total number of users patronizing the facility. Users select their facility based on facility charges and transportation costs. We explore equilibria where each customer selects the least expensive facility (cost and transportation) and where the facility is at a point that minimizes travel costs for its customers. The problem in its general form is quite complex. An interesting special case is studied: facilities and customers are located on a finite line segment and demand is distributed on the line by a given density function.  相似文献   

9.
The facility location problem described in this paper comes from an industrial application in the slaughterhouse industry of Norway. Investigations show that the slaughterhouse industry experiences economies of scale in the production facilities. We examine a location-allocation problem focusing on the location of slaughterhouses, their size and the allocation of animals in the different farming districts to these slaughterhouses. The model is general and has applications within other industries that experience economies of scale.We present an approach based on linearization of the facility costs and Lagrangean relaxation. We also develop a greedy heuristic to find upper bounds. We use the method to solve a problem instance for the Norwegian Meat Co-operative and compare our results to previous results achieved using standard branch-and-bound in commercial software.  相似文献   

10.
We propose techniques for the solution of the LP relaxation and the Lagrangean dual in combinatorial optimization and nonlinear programming problems. Our techniques find the optimal solution value and the optimal dual multipliers of the LP relaxation and the Lagrangean dual in polynomial time using as a subroutine either the Ellipsoid algorithm or the recent algorithm of Vaidya. Moreover, in problems of a certain structure our techniques find not only the optimal solution value, but the solution as well. Our techniques lead to significant improvements in the theoretical running time compared with previously known methods (interior point methods, Ellipsoid algorithm, Vaidya's algorithm). We use our method to the solution of the LP relaxation and the Langrangean dual of several classical combinatorial problems, like the traveling salesman problem, the vehicle routing problem, the Steiner tree problem, thek-connected problem, multicommodity flows, network design problems, network flow problems with side constraints, facility location problems,K-polymatroid intersection, multiple item capacitated lot sizing problem, and stochastic programming. In all these problems our techniques significantly improve the theoretical running time and yield the fastest way to solve them.  相似文献   

11.
In this paper, we propose two exact algorithms for the GQAP (generalized quadratic assignment problem). In this problem, given M facilities and N locations, the facility space requirements, the location available space, the facility installation costs, the flows between facilities, and the distance costs between locations, one must assign each facility to exactly one location so that each location has sufficient space for all facilities assigned to it and the sum of the products of the facility flows by the corresponding distance costs plus the sum of the installation costs is minimized. This problem generalizes the well-known quadratic assignment problem (QAP). Both exact algorithms combine a previously proposed branch-and-bound scheme with a new Lagrangean relaxation procedure over a known RLT (Reformulation-Linearization Technique) formulation. We also apply transformational lower bounding techniques to improve the performance of the new procedure. We report detailed experimental results where 19 out of 21 instances with up to 35 facilities are solved in up to a few days of running time. Six of these instances were open.  相似文献   

12.
The location of facilities in order to provide service for customers is a well-studied problem in the operations research literature. In the basic model, there is a predefined cost for opening a facility and also for connecting a customer to a facility, the goal being to minimize the total cost. Often, both in the case of public facilities (such as libraries, municipal swimming pools, fire stations, … ) and private facilities (such as distribution centers, switching stations, … ), we may want to find a ‘fair’ allocation of the total cost to the customers—this is known as the cost allocation problem. A central question in cooperative game theory is whether the total cost can be allocated to the customers such that no coalition of customers has any incentive to build their own facility or to ask a competitor to service them. We establish strong connections between fair cost allocations and linear programming relaxations for several variants of the facility location problem. In particular, we show that a fair cost allocation exists if and only if there is no integrality gap for a corresponding linear programming relaxation; this was only known for the simplest unconstrained variant of the facility location problem. Moreover, we introduce a subtle variant of randomized rounding and derive new proofs for the existence of fair cost allocations for several classes of instances. We also show that it is in general NP-complete to decide whether a fair cost allocation exists and whether a given allocation is fair.  相似文献   

13.
In this paper we work on a multi-level network optimization problem that integrates into the same model important aspects of: (i) discrete facility location, (ii) topological network design, and (iii) network dimensioning. Potential applications for the model are discussed, stressing its growing importance. The multi-level network optimization problem treated is defined and a mathematical programming formulation is presented. We make use of a branch-and-bound algorithm based on Lagrangean relaxation lower bounds to introduce some new powerful auxiliary algorithms to exactly solve the problem. We conduct a set of computational experiments that indicate the quality of the proposed approach.  相似文献   

14.
We formulate a model for locating multiple-server, congestible facilities. Locations of these facilities maximize total expected demand attended over the region. The effective demand at each node is elastic to the travel time to the facility, and to the congestion at that facility. The facilities to be located are fixed, so customers travel to them in order to receive service or goods, and the demand curves at each demand node (which depend on the travel time and the queue length at the facility), are known. We propose a heuristic for the resulting integer, nonlinear formulation, and provide computational experience.  相似文献   

15.
A firm wants to locate several multi-server facilities in a region where there is already a competitor operating. We propose a model for locating these facilities in such a way as to maximize market capture by the entering firm, when customers choose the facilities they patronize, by the travel time to the facility and the waiting time at the facility. Each customer can obtain the service or goods from several (rather than only one) facilities, according to a probabilistic distribution. We show that in these conditions, there is demand equilibrium, and we design an ad hoc heuristic to solve the problem, since finding the solution to the model involves finding the demand equilibrium given by a nonlinear equation. We show that by using our heuristic, the locations are better than those obtained by utilizing several other methods, including MAXCAP, p-median and location on the nodes with the largest demand.  相似文献   

16.
We consider a supply chain design problem where the decision maker needs to decide the number and locations of the distribution centers (DCs). Customers face random demand, and each DC maintains a certain amount of safety stock in order to achieve a certain service level for the customers it serves. The objective is to minimize the total cost that includes location costs and inventory costs at the DCs, and distribution costs in the supply chain. We show that this problem can be formulated as a nonlinear integer programming model, for which we propose a Lagrangian relaxation based solution algorithm. By exploring the structure of the problem, we find a low-order polynomial algorithm for the nonlinear integer programming problem that must be solved in solving the Lagrangian relaxation sub-problems. We present computational results for several instances of the problem with sizes ranging from 40 to 320 customers. Our results show the benefits of having an integrated supply chain design framework that includes location, inventory, and routing decisions in the same optimization model.  相似文献   

17.
The multi-objective competitive location problem (MOCLP) with distance-based attractiveness is introduced. There are m potential competitive facilities and n demand points on the same plane. All potential facilities can provide attractiveness to the demand point which the facility attractiveness is represented as distance-based coverage of a facility, which is “full coverage” within the maximum full coverage radius, “no coverage” outside the maximum partial coverage radius, and “partial coverage” between those two radii. Each demand point covered by one of m potential facilities is determined by the greatest accumulated attractiveness provided the selected facilities and least accumulated distances between each demand point and selected facility, simultaneously. The tradeoff of maximum accumulated attractiveness and minimum accumulated distances is represented as a multi-objective optimization model. A proposed solution procedure to find the best non-dominated solution set for MOCLP is introduced. Several numerical examples and instances comparing with introduced and exhaustive method demonstrates the good performance and efficiency for the proposed solution procedure.  相似文献   

18.
The traditional Generalized Assignment Problem (GAP) seeks an assignment of customers to facilities that minimizes the sum of the assignment costs while respecting the capacity of each facility. We consider a nonlinear GAP where, in addition to the assignment costs, there is a nonlinear cost function associated with each facility whose argument is a linear function of the customers assigned to the facility. We propose a class of greedy algorithms for this problem that extends a family of greedy algorithms for the GAP. The effectiveness of these algorithms is based on our analysis of the continuous relaxation of our problem. We show that there exists an optimal solution to the continuous relaxation with a small number of fractional variables and provide a set of dual multipliers associated with this solution. This set of dual multipliers is then used in the greedy algorithm. We provide conditions under which our greedy algorithm is asymptotically optimal and feasible under a stochastic model of the parameters.  相似文献   

19.
We consider a generalization of the uncapacitated facility location problem, where the setup cost for a facility and the price charged for service may depend on the number of customers patronizing the facility. Customers are represented by the nodes of the transportation network, and facilities can be located only at nodes; a customer selects a facility to patronize so as to minimize his (her) expenses (price for service + the part of transportation costs paid by the customer). We assume that transportation costs are paid partially by the service company and partially by customers. The objective is to choose locations for facilities and balanced prices so as to either minimize the expenses of the service company (the sum of the total setup cost and the total part of transportation costs paid by the company), or to maximize the total profit. A polynomial-time dynamic programming algorithm for the problem on a tree network is developed.  相似文献   

20.
In this paper, we discuss two challenges of long term facility location problem that occur simultaneously; future demand change and uncertain number of future facilities. We introduce a mathematical model that minimizes the initial and expected future weighted travel distance of customers. Our model allows relocation for the future instances by closing some of the facilities that were located initially and opening new ones, without exceeding a given budget. We present an integer programming formulation of the problem and develop a decomposition algorithm that can produce near optimal solutions in a fast manner. We compare the performance of our mathematical model against another method adapted from the literature and perform sensitivity analysis. We present numerical results that compare the performance of the proposed decomposition algorithm against the exact algorithm for the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号